




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,且,若,则( )ABCD2已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若椭圆离心率,则双曲线的离心率( )ABC3D43已知复数,则共轭复数( )ABCD4下列函数中,既是奇函数又是上的增函数的是( )ABCD5一个几何
2、体的三视图如右图所示,则这个几何体的体积为( )ABCD86某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为()( )ABCD7设函数f(x)在R上可导,其导函数为f(x),且函数y(2x)f(x)的图像如图所示,则下列结论中一定成立的是( )A函数f(x)有极大值f(1)和极小值f(1)B函数f(x)有极大值f(1)和极小值f(2)C函数f(x)有极大值f(2)和极小值f(1)D函数f(x)有极大值f(1)和极小值f(2)8已知,那么等于( )ABCD9已知A,B是半径为的O上的两个点,1,O所在
3、平面上有一点C满足1,则的最大值为()A1B1C21D +110若函数则( )A-1B0C1D211设函数的极小值为,则下列判断正确的是ABCD12已知复数的共轭复数为,则( )A-1B1CD二、填空题:本题共4小题,每小题5分,共20分。13位同学在一次聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。已知位同学之间进行了次交换,且收到份纪念品的同学有人,问收到份纪念品的人数为_14已知(为常数),对任意,均有恒成立,下列说法:的周期为6;若(为常数)的图像关于直线对称,则;若,且,则必有;已知定义在上的函数对任意均有成立,且当时,;又函数(为常数)
4、,若存在使得成立,则实数的取值范围是,其中说法正确的是_(填写所有正确结论的编号)15过双曲线的右焦点F作一条垂直于x轴的垂线交双曲线C的两条渐近线于A、B两点,O为坐标原点,则的面积的最小值为_.16复数(为虚数单位)的共轭复数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了纪念国庆70周年,学校决定举办班级黑板报主题设计大赛,高二某班的同学将班级长米、宽米的黑板做如图所示的区域划分:取中点,连接,以为对称轴,过两点作一抛物线弧,在抛物线弧上取一点,作垂足为,作交于点.在四边形内设计主题,其余区域用于文字排版,设的长度为米.(1)求长度的表达式,并写出定义
5、域;(2)设四边形面积为,求当为何值时, 取最大值,最大为多少平方米?18(12分)在四棱锥中,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值19(12分)函数.(1)若函数在上为增函数,求实数的取值范围;(2)求证:,时,.20(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各
6、天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?21(12分)已知函数.(1)求函数的单调区间;(2)若恒成立,试确定实数的取值范围.22(10分)在极坐标系中,圆的方程为.以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求圆的标准方程和直线的普通方程;(2)若直线与圆交于两点,且,求实数的取值范围.参考答案一、选择题:本题共12
7、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】当 时有 ,所以 ,得出 ,由于 ,所以 .故选B.2、B【解析】设,由椭圆和双曲线的定义,解方程可得,再由余弦定理,可得,与的关系,结合离心率公式,可得,的关系,计算可得所求值【详解】设,为第一象限的交点,由椭圆和双曲线的定义可得,解得,在三角形中,可得,即有,可得,即为,由,可得,故选【点睛】本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,考查化简整理的运算能力,属于中档题3、B【解析】分析:首先求得复数z,然后求解其共轭复数即可.详解:由题意可得:,则其共轭复数.本题选择
8、B选项.点睛:本题主要考查复数的运算法则,共轭复数的概念等知识,意在考查学生的转化能力和计算求解能力.4、B【解析】分别画出各选项的函数图象,由图象即可判断.【详解】由题,画出各选项函数的图象,则选项A为选项B为选项C为选项D为由图象可知,选项B满足既是奇函数又是上的增函数,故选:B【点睛】本题考查判断函数的单调性和奇偶性,考查基本初等函数的图象与性质.5、C【解析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三
9、角形为底面,高为的三棱锥,所以该几何体的体积为,故选C点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解6、A【解析】试题分析:分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,长方体上底面截圆锥的截面半径为,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当,时,等号成立,此时
10、利用率为,故选A.考点:1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.7、A【解析】由函数y(2x)f(x)的图像可知,方程f(x)0有两个实根x1,x1,且在(,1)上f(x)0,在(1,2)上f(x)0,在(2,)上f(x)0.所以函数f(x)有极大值f(1)和极小值f(1)8、
11、B【解析】根据条件概率公式得出可计算出结果.【详解】由条件概率公式得,故选B.【点睛】本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.9、A【解析】先由题意得到,根据向量的数量积求出,以O为原点建立平面直角坐标系,设A(,)得到点B坐标,再设C(x,y),根据点B的坐标,根据题中条件,即可求出结果.【详解】依题意,得:,因为,所以,1,得:,以O为原点建立如下图所示的平面直角坐标系,设A(,),则B(,)或B(,)设C(x,y),当B(,)时,则(x,y)由1,得:1,即点C在1为半径的圆上,A(,)到圆心的距离为:的最大值为1当B(,)时,结论一样故选A【点睛】本
12、题主要考查向量模的计算,熟记向量的几何意义,以及向量模的计算公式,即可求解,属于常考题型.10、B【解析】利用函数的解析式,求解函数值即可【详解】函数,故选B.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力,属于基础题.11、D【解析】对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【详解】令,得,检验:当 时, ,当 时,所以的极小值点为,所以的极小值为,又,选D.【点睛】本题考查利用导数判断单调性和极值的关系,属于中档题.12、C【解析】根据共轭复数的概念,可得,然后利用复数的乘法、除法法则,可得结果.【详解】,故选:C【点睛】本题考查复数的运算,注意细
13、节,细心计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先确定如果都两两互相交换纪念品,共有次交换,可知有次交换没有发生;再根据收到份纪念品的同学有人,可知甲与乙、甲与丙之间没有交换,从而计算得到结果.【详解】名同学两两互相交换纪念品,应共有:次交换现共进行了次交换,则有次交换没有发生收到份纪念品的同学有人 一人与另外两人未发生交换若甲与乙、甲与丙之间没有交换,则甲、乙、丙未收到份纪念品收到份纪念品的人数为:人本题正确结果: 【点睛】本题考查排列组合应用问题,关键是能够确定未发生交换的次数,并且能够根据收到份纪念品的人数确定未发生交换的情况.14、【解析】根据成立
14、即可求得对称轴,由对称轴结合解析式即可求得的值,可判断;根据及对称轴即可求得的值,可判断;根据条件可得与的关系,结合二次函数的值域即可判断;根据条件可知函数为偶函数,根据存在性成立及恒成立,转化为函数的值域即可判断.【详解】对于,因为对任意,均有成立,则的图像关于直线对称,所以解得.即是轴对称函数,不是周期函数,所以错误;对于,的图像关于直线对称,可得,解得,所以正确;对于,而由可知则或.当时,代入可得,即,解不等式组可得,不等式无解,所以不成立当时,代入可得,即,解不等式组可得,即所以,所以,所以错误;对于,由可知函数为偶函数,当时, ;当时, .所以在上的值域为在上的值域为因为存在使得成立
15、所以只需且即,即实数的取值范围是,所以正确综上可知,说法正确的是故答案为: 【点睛】本题考查了函数的奇偶性、对称性及恒成立问题的综合应用,对于分类讨论思想的理解,属于难题。15、1【解析】求得双曲线的b,c,求得双曲线的渐近线方程,将xc代入双曲线的渐近线方程,可得A,B的坐标,求得OAB的面积,运用基本不等式可得最小值【详解】解:双曲线C:1的b2,c2a2+4,(a0),设F(c,0),双曲线的渐近线方程为yx,由xc代入可得交点A(c,),B(c,),即有OAB的面积为Sc22(a)41,当且仅当a2时,OAB的面积取得最小值1故答案为:1【点睛】本题考查双曲线的方程和性质,主要是渐近线
16、方程的运用,考查三角形的面积的最值求法,注意运用基本不等式,考查运算能力,属于中档题16、【解析】利用复数的除法法则将复数表示为一般形式,由此可得出复数的共轭复数.【详解】,因此,复数的共轭复数为,故答案为.【点睛】本题考查复数的除法运算以及共轭复数,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2) 当时,四边形面积取得最大值为【解析】(1)建立平面直角坐标系求出对应点的坐标,利用待定系数法求出抛物线方程,进行求解即可;(2)构造函数,求出函数的导数,利用函数最值极值和导数之
17、间的关系求最值即可.【详解】以为坐标原点,以所在的直线为轴,轴建立平面直角坐标系.所以,所以直线为 因为抛物线是以为对称轴,设抛物线的方程为, 因为点在抛物线上,所以,所以 因为,所以,所以 因为,所以四边形的面积 设,由,解得: t1+0-极大值所以当时,取极大值且是最大值 答:当时,四边形面积取得最大值为【点睛】该题考查的是有关函数应用的问题,涉及到的知识点有求函数的解析式,应用导数求函数的最值,属于中档题目.18、(1)详见解析;(2).【解析】试题分析:()取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形得到DEAF,再由线面平行的判定可得ED面PAB
18、;()法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得ABAC,找出二面角A-PC-D的平面角求解三角形可得二面角A-PC-D的余弦值试题解析:()证明:取PB的中点F,连接AF,EFEF是PBC的中位线,EFBC,且EF=又AD=BC,且AD=,ADEF且AD=EF,则四边形ADEF是平行四边形DEAF,又DE面ABP,AF面ABP,ED面PAB()法一、取BC的中点M,连接AM,则ADMC且AD=MC,四边形ADCM是平行四边形,AM=MC=MB,则A在以BC为直径的圆上ABAC,可得过D作DGAC于G,平面PAC平面ABCD,且平面PAC平面ABCD=AC,DG平面
19、PAC,则DGPC过G作GHPC于H,则PC面GHD,连接DH,则PCDH,GHD是二面角APCD的平面角在ADC中,连接AE,在RtGDH中,即二面角APCD的余弦值 法二、取BC的中点M,连接AM,则ADMC,且AD=MC四边形ADCM是平行四边形,AM=MC=MB,则A在以BC为直径的圆上,ABAC面PAC平面ABCD,且平面PAC平面ABCD=AC,AB面PAC如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系可得,设P(x,0,z),(z0),依题意有,解得则,设面PDC的一个法向量为,由,取x0=1,得为面PAC的一个法向量,且,设二面角APCD的大小为,则有,即二
20、面角APCD的余弦值 19、(1)(2)见解析【解析】(1)利用函数在区间单调递增,则其导函数在此区间大于等于零恒成立可得; (2)由第(1)问的结论,取 时构造函数,得其单调性,从而不等式左右累加可得.【详解】(1)解:,在上为增函数,在上恒成立,即在上恒成立,的取值范围是.(2)证明:由(1)知时,在上为增函数,令,其中,则,则,即,即,累加得,.【点睛】本题关键在于构造出所需函数,得其单调性,累加可得,属于难度题。20、(1)分布列见解析;(2)520.【解析】分析:(1)根据题意所有的可能取值为200,300,500,由表格数据知,;(2)分两种情况:当时,当时,分别得到利润表达式.详解:(1)由题意知,所有的可能取值为200,300,500,由表格数据知,.因此的分布列为0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑当时,若最高气温不低于25,则;若最高气温位于区间,则;若最高气温低于20,则因此当时,若最高气温不低于20,则,若最高气温低于20,则,因此所以时,的数学期望达到最大值,最大值为520元.方法点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备入股买卖协议书
- 酒吧设备出售协议书
- 车辆推迟过户协议书
- 酒吧包间转让协议书
- 茶楼经营合伙协议书
- 邻居双方建房协议书
- 体育俱乐部安全协议书
- 选美大赛参赛协议书
- 转让自建商铺协议书
- 酒馆股份保密协议书
- 第六单元《军民团结一家亲》课件 中学音乐人音版七年级下册
- 2025年中考地理热点素材题(含答案)
- 宁波大学2014-2015年高等数学A2期末考试试卷
- 2025年硕士研究生政治考研大纲
- 电子商务教师资格证教学理念试题及答案
- 地下工程防水技术规范
- 《医院手术室净化施工方案》培训
- 【正版授权】 ISO/IEC 19790:2025 EN Information security,cybersecurity and privacy protection - Security requirements for cryptographic modules
- 整套课件-证券投资学(第二版)赵锡军
- 2025年《教师专业成长与专业发展》培训心得(3篇)
- 2025年重庆市环卫集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论