




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Numerical Method of Differential EquationInstructor: Dr. Xinming ZhangDepartment of Mathematics & Natural Sciences第1页第1页 About This Course - OutlineInitial-Value Problems for Ordinary Differential Equations Chapter 1 Introduction to the Partial Differential Equations and Finite Difference MethodChap
2、ter 3Chapter 2Boundary-Value Problems for Ordinary Differential Equations Finite Difference Method for Hyperbolic Partial Differential EquationsChapter 5Chapter 6Finite Difference Method for Elliptic Partial Differential EquationsFinite Difference Method for Parabolic Partial Differential EquationsC
3、hapter 4第2页第2页 Chapter 3 Introduction to PDE and FDM The chapter serves as an introduction to partial differential equation and to the subject of finite difference methods for solving partial differential equations.3.1 Introduction to Partial Differential Equation3.2 Introduction to Finite Differenc
4、e Method第3页第3页 3.1 Introduction to Partial Differential Equation3.1.1 Some classical PDEs Partial differential equation (PDEs) from the basis of very many mathematical models of physical, chemical and biological phenomena, and more recently their use has spread into economics, financial forecasting,
5、 image processing and other fields. To investigate the predictions of PDE models of such phenomena it is often necessary to approximate their solution numerically, commonly in combination with the analysis of simple special cases; while in some of the recent instances the numerical models play an al
6、most independent role. Let us consider an example. 第4页第4页 3.1 Introduction to Partial Differential Equation第5页第5页 3.1 Introduction to Partial Differential Equation If the boundary of the body is relatively simple, the solution to this equation can be found using Fourier series. In most situations wh
7、ere k, c and p are not constants or when the boundary is irregular, the solution to the partial differential equation must be obtained by approximation techniques. An introduction to techniques of this type is presented in this chapter. Of the many different approaches to solving partial differentia
8、l equations numerically (finite difference, finite elements, spectral methods, collocation methods, etc.), we shall study difference methods. Next, we will give some classical PDEs.第6页第6页 3.1 Introduction to Partial Differential Equation第7页第7页 3.1 Introduction to Partial Differential Equation第8页第8页
9、3.1 Introduction to Partial Differential Equation第9页第9页 3.1 Introduction to Partial Differential Equation第10页第10页 3.1 Introduction to Partial Differential Equation第11页第11页 3.1 Introduction to Partial Differential Equation3.1.2 Fixed Solution Problem In general, it is difficult to express the partial
10、 differential equation with general solution. PDEs are solved in certain conditions, we refer to the conditions as fixed solution conditions, including initial condition, boundary condition. The equations and the fixed solution conditions make a fixed solution problem.第12页第12页 3.1 Introduction to Pa
11、rtial Differential Equation第13页第13页 3.1 Introduction to Partial Differential Equation第14页第14页3.1 Introduction to Partial Differential Equation3.2 Introduction to Finite Difference MethodChapter 3 Introduction to PDE and FDM第15页第15页 3.2 Introduction to Finite Difference Method3.2.1 Get Started We con
12、sider the following initial boundary value problem第16页第16页 3.2 Introduction to Finite Difference Method第17页第17页 3.2 Introduction to Finite Difference Method第18页第18页 3.2 Introduction to Finite Difference Method第19页第19页 3.2 Introduction to Finite Difference Method第20页第20页 3.2 Introduction to Finite Di
13、fference Method第21页第21页 3.2 Introduction to Finite Difference Method第22页第22页 3.2 Introduction to Finite Difference Method第23页第23页 3.2 Introduction to Finite Difference Method We now have a numerical scheme to approximate the solution of initial-boundary-value problem. We call this scheme an explicit
14、 scheme because we are able to solve for the variable at the (n+1)st time level explicitly.第24页第24页 3.2 Introduction to Finite Difference Method第25页第25页 3.2 Introduction to Finite Difference Method第26页第26页 3.2 Introduction to Finite Difference MethodNext, we introduce some difference notations第27页第2
15、7页 3.2 Introduction to Finite Difference Method第28页第28页 3.2 Introduction to Finite Difference Method3.2.2 Convergence, Consistency and Stability3.2.2.1 Truncation error第29页第29页 3.2 Introduction to Finite Difference Method第30页第30页 3.2 Introduction to Finite Difference Method For implicit difference s
16、cheme (3.5), we have(3.2-1)(3.3)第31页第31页 3.2 Introduction to Finite Difference Method3.2.2.2 Convergence第32页第32页 3.2 Introduction to Finite Difference Method第33页第33页 3.2 Introduction to Finite Difference Method第34页第34页 3.2 Introduction to Finite Difference Method(3.13)(3.11-1)第35页第35页 3.2 Introducti
17、on to Finite Difference Method第36页第36页 3.2 Introduction to Finite Difference Method第37页第37页 3.2 Introduction to Finite Difference Method第38页第38页 3.2 Introduction to Finite Difference Method第39页第39页 3.2 Introduction to Finite Difference MethodInitial-Boundary-Value Problems第40页第40页 3.2 Introduction t
18、o Finite Difference Method第41页第41页 3.2 Introduction to Finite Difference Method3.2.2.3 Consistency第42页第42页 3.2 Introduction to Finite Difference Method第43页第43页 3.2 Introduction to Finite Difference Method第44页第44页 3.2 Introduction to Finite Difference Method第45页第45页 3.2 Introduction to Finite Differe
19、nce Method第46页第46页 3.2 Introduction to Finite Difference Method第47页第47页 3.2 Introduction to Finite Difference Method第48页第48页 3.2 Introduction to Finite Difference Method第49页第49页 3.2 Introduction to Finite Difference MethodInitial-Boundary-Value Problems第50页第50页 3.2 Introduction to Finite Difference
20、Method3.2.2.4 Stability第51页第51页 3.2 Introduction to Finite Difference Method第52页第52页 3.2 Introduction to Finite Difference Method第53页第53页 3.2 Introduction to Finite Difference Method第54页第54页 3.2 Introduction to Finite Difference Method3.2.2.5 The Lax Theorem第55页第55页 3.2 Introduction to Finite Differ
21、ence Method第56页第56页 3.2 Introduction to Finite Difference Method3.2.3 Proving stability of difference scheme In the previous section, we showed important stability is for proving convergence of difference scheme. This section is devoted to proving stability of difference scheme. This is done largely
22、 by introducing tools that can be used to prove stability of difference schemes, such as discrete Fourier transform. 第57页第57页 3.2 Introduction to Finite Difference Method3.2.3.1Initial Value Problem第58页第58页 3.2 Introduction to Finite Difference Method第59页第59页 3.2 Introduction to Finite Difference Me
23、thod第60页第60页 3.2 Introduction to Finite Difference Method第61页第61页 3.2 Introduction to Finite Difference Method第62页第62页 3.2 Introduction to Finite Difference Method第63页第63页 3.2 Introduction to Finite Difference Method第64页第64页 3.2 Introduction to Finite Difference Method第65页第65页 3.2 Introduction to Fi
24、nite Difference Method第66页第66页 3.2 Introduction to Finite Difference Method第67页第67页 3.2 Introduction to Finite Difference Method第68页第68页 3.2 Introduction to Finite Difference Method第69页第69页 3.2 Introduction to Finite Difference Method第70页第70页 3.2 Introduction to Finite Difference Method第71页第71页 3.2
25、Introduction to Finite Difference Method第72页第72页 3.2 Introduction to Finite Difference Method第73页第73页 3.2 Introduction to Finite Difference Method第74页第74页 3.2 Introduction to Finite Difference Method3.2.3.2 Initial Boundary Value Problems We now discuss stability for initial boundary value problems.
26、 We shall discuss only problems that are bounded in each spatial variable. We recall that a difference scheme for an initial boundary value problem consists of a difference equation approximating the partial differential equation and difference equations approximating each boundary condition. If the
27、 difference scheme is unstable without considering the boundary conditions (i.e. considering the difference scheme as an initial value scheme), then the scheme will also be unstable for the initial boundary value problem when the boundary condition equations are included. Hence, we obtain the following result.第75页第75页 3.2 Introduction to Finite Difference MethodProposition 3.9 Consider a difference scheme for an initial boundary value problem. The von Neumann condition for the difference sche
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盘扣式脚手架安全技术规范
- 2025年小学数学应用题(鸡兔同笼)解题技巧实战挑战卷
- 2025年日语能力考试N1级语法难点突破模拟试卷(附接续总结与语法运用技巧)
- 2025年金融法律类考试押题冲刺:证券公司监督管理法全真模拟试卷
- 2025年考研数学(三)线性代数与概率题型解析与解题技巧实战卷
- 2025年高压电工考试题库操作技能模拟试题集(中级)
- 肋骨骨折病人护理常规
- 创业团队的组建与管理
- SAT考试历史文献阅读:2025年独立宣言与联邦党人文集深度阅读试卷
- 2025年智能汽车应用工程师职业技能认证模拟试卷(智能驾驶技术与应用)-案例分析篇
- 医疗器械网络销售质量管理规范宣贯培训课件2025年
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- DL∕T 5370-2017 水电水利工程施工通 用安全技术规程
- 广东省2024年中考数学试卷【附真题答案】
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 监控立杆基础国家标准
- 方格子汉字独体字表
- 德鲁克的绩效观
- 那洛巴尊者传
- 包材产品HACCP计划
- SAP_PS-PS模块配置和操作手册
评论
0/150
提交评论