版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1下列随机试验的结果,不能用离散型随机变量表示的是()A将一枚均匀正方体骰子掷两次,所得点数之和B某篮球运动员6次罚球中投进的球数C电视机的使用寿命D从含有3件次品的50件产品中,任取2件,其中抽到次品的件数2已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点( )A在轴上B在轴上C当时在轴上D当时在轴上3已知复数,则下列结论正确的是A的虚部为iBC为纯虚数D4设集合,|,则()ABCD5 “所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理( )A大前提错误B小前提错误C结论错误D正确6为了测算如图所示的阴影部分的面积,作一个边长为3的
3、正方形将其包含在内,并向正方形内随机投掷600个点已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是A4B3C2D17下列选项叙述错误的是 ( )A命题“若,则”的逆否命题是“若,则”B若命题,则C若为真命题,则,均为真命题D若命题为真命题,则的取值范围为8是第四象限角,,,则( )ABCD9口袋中装有标号为1,2,3,4,5,6且大小相同的6个球,从袋中一次摸出2个球,记下号码并放回,若这2个号码之和是4的倍数或这2个球号码之和是3的倍数,则获奖.某人从袋中一次摸出2个球,其获奖的概率为( )ABCD10高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲
4、工厂必须有班级要去,则不同的参观方案有( )A16种B18种C37种D48种11某地区空气质量检测资料表明,一天的空气质量为优良的概率是0.9,连续两天为优良的概率是0.75,已知某天的空气质量为优良,则随后一天的空气质量也为优良的概率为( )ABCD12已知,且,则向量在方向上的正射影的数量为A1BCD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,其中是虚数单位,则的模是_14在长方体中,则直线与平面所成角的正弦值为_15某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:好像是乙或丙去了.”乙说:“甲、丙都没去”丙说:“是丁去了”丁说:“丙说的
5、不对.”若四名员工中只有一个人说的对,则出国研学的员工是_.16已知是虚数单位,则复数的实部为_ .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)甲、乙两队进行防溺水专题知识竞赛,每队3人,首轮比赛每人一道必答题,答对者则为本队得1分,答错或不答得0分,己知甲队每人答对的概率分别为,乙队每人答对的概率均为.设每人回答正确与否互不影响,用表示首轮比赛结束后甲队的总得分.(1)求随机变量的分布列;(2)求在首轮比赛结束后甲队和乙队得分之和为2的条件下,甲队比乙队得分高的概率.18(12分)设函数,曲线在点,(1)处的切线与轴垂直(1)求的值;(2)若存在,使得,求的取
6、值范围19(12分)如图,在三棱柱中,底面,点,分别为与的中点.(1)证明:平面.(2)求与平面所成角的正弦值.20(12分)如图,平面,.()求证:平面;()求直线与平面所成角的正弦值;()若二面角的余弦值为,求线段的长.21(12分)2018年双11当天,某购物平台的销售业绩高达2135亿人民币与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次(1)请完成下表,并判断是否可以在犯错误概率不超过0.5的前提下,认为商品好评与服务好评有关
7、?对服务好评对服务不满意合计对商品好评140对商品不满意10合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X求随机变量X的分布列;求X的数学期望和方差附:K2P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82822(10分)已知关于的不等式.(1)当时,解不等式;(2)如果不等式的解集为空集,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析: 直接利
8、用离散型随机变量的定义逐一判断即可.详解:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种,随机变量的函数仍为随机变量,有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为“离散型随机变量”,题目中都属于离散型随机变量,而电视机的使用寿命属于连续型随机变量,故选C.点睛:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量,本题考的离散型随机变量.2、B【解析】设出双曲线的一般方程,利用题设不等式,令
9、二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,平方,两边除,双曲线的焦点在轴上.故选:B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力3、C【解析】先利用复数的除法将复数化为一般形式,然后利用复数的基本知识以及四则运算法则来判断各选项的正误【详解】,的虚部为,为纯虚数,故选C.【点睛】本题考查复数的四则运算、复数的概念、共轭复数等的理解,解题的关键就是将复数化为一般形式,借助相关概念进行理解,考查计算能力,属于基础题4、C【解析】解出集合M中的不等式即可【详解】因为
10、,所以故选:C【点睛】本题考查的是解对数不等式及集合的运算,属于基本题.5、D【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论详解:所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,这个推理是正确的,故选D点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.6、B【解析】根据几何概率的计算公式可求,向正方形内随机投掷点,落在阴影部分的
11、概率,即可得出结论【详解】本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内,而有200个点落在阴影部分,可知阴影部分的面积故选:B【点睛】本题考查的是一个关于几何概型的创新题,属于基础题解决此类问题的关键是读懂题目意思,然后与学过的知识相联系转化为熟悉的问题在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在的区域(事实也是角)任一位置是等可能的7、C【解析】分析:根据四种命题的关系进行判断A、B,根据或命题的真值
12、表进行判断C,由全称命题为真的条件求D中参数的值详解:命题“若,则”的逆否命题是“若,则”,A正确;若命题,则,B正确; 若为真命题,则,只要有一个为真,C错误;若命题为真命题,则,D正确故选C点睛:判断命题真假只能对每一个命题进行判断,直到选出需要的结论为止命题考查四种命题的关系,考查含逻辑连接词的命题的真假以及全称命题为真时求参数的取值范围,掌握相应的概念是解题基础8、D【解析】根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.【详解】因为,由同角三角函数基本关系可得:,解得:,又是第四象限角,所以.故选:D.【点睛】本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,
13、属于常考题型.9、A【解析】分析:先求出基本事件的总数,再求出这2个号码之和是4的倍数或这2个球号码之和是3的倍数的基本事件,再根据古典概型的概率计算公式求解即可.详解:从6个球中一次摸出2个球,共有种,2个号码之和是4的倍数或这2个球号码之和是3的倍数,共有:9种,获奖的概率为.故选A.点睛:求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择10、C【解析】根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,
14、由事件之间的关系,计算可得答案【详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有444=64种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有333=27种方案;则符合条件的有64-27=37种,故选:C【点睛】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有344=48种方案;显然这种方法中有重复的计算;解题时特别要注意11、A【解析】设“某天的空气质量为优良”是事件,“随后一天的空气质量为优良”是事件,根据条件概率的计算公式,即可得出结果.【详解】设“某天的空气质量为优良”是
15、事件,“随后一天的空气质量为优良”是事件,由题意可得,所以某天的空气质量为优良,则随后一天的空气质量也为优良的概率为.故选A【点睛】本题主要考查条件概率,熟记条件概率的计算公式即可,属于常考题型.12、D【解析】由与、可得出,向量在方向上的正射影的数量=【详解】向量在方向上的正射影的数量=【点睛】本题考查两向量垂直,其数量积等于0. 向量在方向上的正射影的数量=.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:分子分母同时乘以,化简整理,得出,再得模。详解:,所以。点睛:复数的除法运算公式。14、【解析】分析:过作,垂足为,则平面,则即为所求平面角,从而可得结果.详解:依题
16、意,画出图形,如图,过作,垂足为,由平面,可得,所以平面,则即为所求平面角,因为,所以,故答案为.点睛:本题考查长方体的性质,以及直线与平面所成的角,属于中档题.求直线与平面所成的角由两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.15、甲【解析】分别假设是甲、乙、丙、丁去时,四个人所说的话的正误,进而确定结果.【详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的
17、对,符合题意.故答案为:甲.【点睛】本题考查逻辑推理的相关知识,属于基础题.16、【解析】直接利用复数代数形式的乘除运算化简得答案【详解】,复数的实部为1故答案为:1【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于容易题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;(2)【解析】(1)的所有可能取值为0、1、2、3,求出对应的概率即可;(2)先求出甲、乙两队得分之和为2分的概率,再通过条件概率的计算公式求出甲队比乙队得分高的概率.【详解】(1)的所有可能取值为0、1、2、3,故的分布列为0123P(2)记事件A表示“甲、乙两队得分之和为
18、2分”,事件B表示“甲队比乙队得分高”,则,所以,所以,在首轮比赛结束后甲队和乙队得分之和为2的条件下,甲队比乙队得分高的概率.【点睛】本题考查离散型随机变量的分布列,考查条件概率的求解,是中档题.18、(1);(2)【解析】(1)求得的导数,利用导数的几何意义可得切线的斜率,解方程可得;(2)依据的导数,讨论的范围,结合单调性可得最小值,解不等式即可得到所求范围【详解】(1),由题设知,解得.(2)解:的定义域为,由(1)知,(i)若,则故当,使得的充要条件为,即,解得(ii)若,则,故当时,;当时,;所以在单调递减,在单调递增,所以,存在,使得的充要条件为,所以不合题意(iii)若,则时,
19、在上单调递减,但是,综上所述,的取值范围是【点睛】本题主要考查导数的运用:利用导数的几何意义求切线的斜率,研究单调性和极值,意在考查学生分类讨论思想、方程思想的运用能力以及数学运算能力。19、(1)见解析(2)【解析】(1)先连接,根据线面平行的判定定理,即可得出结论;(2)先以为原点建立如图所示的空间直角坐标系,求出直线的的方向向量与平面的法向量,由向量夹角公式求出向量夹角余弦值,即可得出结果.【详解】(1)证明:如图,连接,.在三棱柱中,为的中点.又因为为的中点,所以.又平面,平面,所以平面.(2)解:以为原点建立如图所示的空间直角坐标系,则,所以,.设平面的法向量为,则,令,得.记与平面
20、所成角为,则 .【点睛】本题主要考查线面平行的判定、以及线面角的向量求法,熟记线面平行的判定定理以及空间向量的方法即可,属于常考题型.20、()见证明;()()【解析】首先利用几何体的特征建立空间直角坐标系()利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;()分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;()首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.【详解】依题意,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),可得.设,则.()依题意,是平面ADE
21、的法向量,又,可得,又因为直线平面,所以平面. ()依题意,设为平面BDE的法向量,则,即,不妨令z=1,可得,因此有.所以,直线与平面所成角的正弦值为.()设为平面BDF的法向量,则,即.不妨令y=1,可得.由题意,有,解得.经检验,符合题意所以,线段的长为.【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.21、(1)详见解析(2)详见解析E(X)=2110【解析】(1)补充列联表,根据公式计算卡方值,进行判断;(2)()每次购物时,对商品和服务都好评的概率为710,且X的取值可以是0,1,2,3,x符合二项分布,按照二项分布的公式进行计算即可得到相应的概率值;()按照二项分布的期望和方差公式计算即可【详解】(1)由题意可得关于商品和服务评价的22列联表:对服务好评对服务不满意合计对商品好评14040180对商品不满意101020合计15050200则K2由于7.4077.879,则不可以在犯错误概率不超过0.5的前提下,认为商品好评与服务好评有关(2)()每次购物时,对商品和服务都好评的概率为710且X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年语文阅读理解能力及表达能力提升试题
- 2026年个人能力素质与职业技能训练专题练习题
- 2026年初级健身教练认证体能训练与健身计划设计题库
- 2026年公共政策在促进社会公平和减少贫富差距中的作用研究题目
- 2026年主题职业卫生安全考试试题库
- 2026年安全防范技能考核火灾预防与应急处理措施题
- 2025年名创优品管理师面试题库及答案
- 范式之约课件
- 库存管理与优化实战模拟试卷及答案
- 2026年信息安全管理BP业务理解考核
- 2026届湖南省长郡中学生物高三上期末学业质量监测模拟试题含解析
- 餐厅特色档口运营方案
- 2025年天翼云解决方案架构师认证考试模拟题库(200题)答案及解析
- 2025年甘肃省综合评标专家库考试题库及答案
- 老年友善医院创建-社区卫生服务中心员工手册
- 高一地理(人教版)学案必修一第6章第二节地质灾害
- 2025年大宗商品数字化交易平台可行性研究报告
- 广东省中山市三鑫学校2025-2026学年上学期九年级10月月考英语试题(含答案)
- 行政执法证据课件
- 部队后勤炊事课件
- 2025年数据分析与可视化考试试题及答案
评论
0/150
提交评论