2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析_第1页
2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析_第2页
2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析_第3页
2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析_第4页
2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022学年江苏省淮安市盱眙县明祖陵中学高一数学理期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线,则该直线的倾斜角为( )A. B. C.D.参考答案:A2. 下列各函数在其定义域中,既是奇函数,又是增函数的是( )A. B. C. D.参考答案:D略3. 设A=-3,x+1,x2,B=x-5,2x-1,x2+1,若AB=-3,故实数x等于 ( )A-1 B。0 C。1 D。2参考答案:A4. 若P(2,1)为圆(x1)2+y2=25的弦AB的中点,则直线AB的方程为()A2x+y3=0Bx+y1=

2、0Cxy3=0D2xy5=0参考答案:C【考点】直线与圆的位置关系【分析】求出圆心C的坐标,得到PC的斜率,利用中垂线的性质求得直线AB的斜率,点斜式写出AB的方程,并化为一般式【解答】解:圆(x1)2+y2=25的圆心C(1,0),点P(2,1)为 弦AB的中点,PC的斜率为=1,直线AB的斜率为1,点斜式写出直线AB的方程 y+1=1(x2),即 xy3=0,故选C5. 设, 则( ) A B C D 参考答案:C略6. 已知点在第三象限,则角在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:D【分析】由题意可得且,分别求得的范围,取交集即得答案。【详解】由题意,由

3、知,为第三、第四或轴负半轴上的角;由知,为第二或第四象限角则角在第四象限,故选【点睛】本题主要考查三角函数在各象限的符号。7. 若函数在区间上的最大值是最小值的2倍,则=( )A B C D 参考答案:C8. 设集合Ax|1x2,B x|xa,若AB,则a的取值范围是( )Aa|a1 Ba|a1 Ca|a2 Da|a2参考答案:D9. 设a -1, ,1,3 ,则使函数y= 的定义域为R且为奇函数的所有a值为( )A. 1,3 B. -1,1 C.-1,3 D,-1,1,3参考答案:A 10. 已知集合A=x|x2x20,B=,在区间(3,3)上任取一实数x,则xAB的概率为()ABCD参考答

4、案:C【考点】几何概型【分析】分别求解二次不等式及分式不等式可求集合A,B,进而可求AB,由几何概率的求解公式即可求解【解答】解:A=x|x2x20=(1,2),B=(1,1),所以AB=x|1x1,所以在区间(3,3)上任取一实数x,则“xAB”的概率为=,故选C【点评】本题主要考查了二次不等式、分式不等式的求解及与区间长度有关的几何概率的求解,属于知识的简单应用二、 填空题:本大题共7小题,每小题4分,共28分11. 已知FOQ的面积为S,且若,则的夹角的取值范围是参考答案:(45,60)【考点】9P:平面向量数量积的坐标表示、模、夹角【分析】由向量的数量积公式得到与的乘积,把面积转化为含

5、有角OFQ正切的表达式,由三角形面积的范围得到角OFQ正切值的范围,从而得到答案【解答】解:,=,得:,由三角形面积公式,得:S=,S=,120OFQ135,而的夹角与OFQ互为补角,夹角的取值范围是:(45,60)12. 空间中的三个平面最多能把空间分成部分。 参考答案:813. 已知集合A=x|x为不超过4的自然数,用列举法表示A=参考答案:0,1,2,3,4考点:集合的表示法 专题:规律型分析:先求出A中满足条件的元素,然后利用列举法进行表示解答:解:满足x为不超过4的自然数有0,1,2,3,4故A=0,1,2,3,4故答案为:0,1,2,3,4点评:本题主要考查利用列举法表示集合,要求

6、熟练掌握列举法和描述法在表示集合时的区别和联系14. 已知,则 _ .参考答案:15. 数列an是以a为首项,q为公比的等比数列,数列bn满足,数列cn满足,若cn为等比数列,则_参考答案:3【分析】先由题意求出数列的通项公式,代入求出数列的通项公式,根据等比数列通项公式的性质,即可求出,得出结果.【详解】因为数列是以为首项,为公比的等比数列,所以;则,则,要使为等比数列,则,解得,所以.故答案为3【点睛】本题主要考查数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型.16. 过P(1,2)的直线l把圆分成两个弓形,当其中劣孤最短时直线l的方程为_.参考答案:【分析】首先根据圆的几

7、何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,, ,直线方程是,即,故填:.【点睛】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.17. 设函数若,则x0的取值范是 参考答案:三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 2008年2月26日,中国海军三艘舰艇从海南省三亚启航赴亚丁湾、索马里海域执行首次护航任务,是我国15世纪后最大远征参与此次护航任务的舰艇有169“武汉”号导弹驱逐舰、171“

8、海口”号导弹驱逐舰、887“微山湖”号综合补给舰假设护航编队在索马里海域执行护航任务时(如图),海中有一小岛,周围3.8海里内有暗礁军舰从A地出发由西向东航行,望见小岛B在北偏东75,航行8海里到达C处,望见小岛B在北端东60若此舰不改变舰行的方向继续前进,问此舰有没有角礁的危险?参考答案:【考点】解三角形的实际应用【分析】由条件求得ACB=150,BC=8,过B作AC的垂线垂足为D,在BCD中,求得BD=43.8,从而得出结论【解答】解:在ABC中,BAC=15,ACB=150,AC=8,可得:ABC=15BC=8,过B作AC的垂线垂足为D,在BCD中,求得BD=BC?sin30=443.8

9、,没有危险19. 设aN,bN,ab2,A(x,y)|(xa)2(ya)25b,(3,2)A,求a,b的值参考答案:解:由ab2,得b2a,代入(xa)2(ya)25b得:(xa)2(ya)25(2a),又因为(3,2)A,将点代入,可得(3a)2(2a)25(2a),整理,得2a25a30,得a1或1.5(舍去,因为a是自然数),所以a1,所以b2a1,综上,a1,b1.20. 已知向量a,b的夹角为60,且|a|=2,|b|=1,若c=2a-b,d=a+2b,求: ( I )cd; ()|c+2d|参考答案:21. 如图,在四棱锥PABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底

10、面ABCD是边长为2的菱形,BAD=60,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:(1)EN平面PDC;(2)BC平面PEB;(3)平面PBC平面ADMN参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的判定【专题】证明题;空间位置关系与距离【分析】(1)先证明ADMN由N是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形得ENDM,DM?平面PDC,可得EN平面PDC;(2)由侧面PAD是正三角形,且与底面ABCD垂直,E为AD的中点,得PEAD,PEEB,PEBC,由BAD=60,AB=2,AE=1,由余弦定理可得BE=,

11、由正弦定理可得:BEAD,有由ADBC可得BEBC,可得BC平面PEB;(3)由(2)知BC平面PEB,EN?平面PEB可得PBMN,由AP=AB=2,N是PB的中点,得PBAN,有MNAN=NPB平面ADMN,可证平面PBC平面ADMN【解答】解:(1)ADBC,AD?平面ADMN,BC?平面ADMN,BC平面ADMN,MN=平面ADMN平面PBC,BC?平面PBC,BCMN又ADBC,ADMNEDMNN是PB的中点,E为AD的中点,底面ABCD是边长为2的菱形,ED=MN=1四边形ADMN是平行四边形ENDM,DM?平面PDC,EN平面PDC;(2)侧面PAD是正三角形,且与底面ABCD垂

12、直,E为AD的中点,PEAD,PEEB,PEBCBAD=60,AB=2,AE=1,由余弦定理可得BE=,由正弦定理可得:BEAD由ADBC可得BEBC,BEPE=EBC平面PEB;(3)由(2)知BC平面PEB,EN?平面PEBBCENPBBC,PBADPBMNAP=AB=2,N是PB的中点,PBAN,MNAN=NPB平面ADMN,PB?平面PBC平面PBC平面ADMN【点评】本题主要考察了平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查22. (本小题12分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱吨需要耗一级子棉吨、二级子棉吨;生产乙种棉纱吨需要耗一级子棉吨、二级子棉吨.每吨甲种棉纱的利润是元,每吨乙种棉纱的利润是元.工厂在生产这两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论