辽宁省大连市普兰店市第三中学2023学年高考数学倒计时模拟卷(含解析)_第1页
辽宁省大连市普兰店市第三中学2023学年高考数学倒计时模拟卷(含解析)_第2页
辽宁省大连市普兰店市第三中学2023学年高考数学倒计时模拟卷(含解析)_第3页
辽宁省大连市普兰店市第三中学2023学年高考数学倒计时模拟卷(含解析)_第4页
辽宁省大连市普兰店市第三中学2023学年高考数学倒计时模拟卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前项和为,若,则数列的公差为( )ABCD2设是虚数单位,复数()ABCD3已知函数(,且)在区间上的值域为,则( )ABC或D或44已知向量,若,则实数的值为( )ABCD

2、5如图所示,三国时代数学家在周脾算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A20B27C54D646已知实数,满足约束条件,则目标函数的最小值为ABCD7某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有( )A480种B360种C2

3、40种D120种8阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD9已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD10设点是椭圆上的一点,是椭圆的两个焦点,若,则( )ABCD11已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD12已知复数,满足,则( )A1BCD5二、填空题:本题共4小题,每小题5分,共20分。13已知i为虚数单位,复数,则_14已知,那么_.15平行四边形中,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,

4、球的表面积为_.16已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.18(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.()求直线的直角坐标方程与曲线的普通方程;()已知点设直线与曲线相交于两点,求的值.19(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别

5、为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜Pi+4(i=4,3,2,4)表示甲总分为i时,最终甲获胜的概率写出P0,P8的值;求决赛甲获胜的概率20(1

6、2分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.21(12分)武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.(1)为了解“五一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到20

7、19这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:劳动节当日客流量频数(年)244以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:劳动节当日客流量型游船最多使用量123若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万

8、元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?22(10分)已知变换将平面上的点,分别变换为点,设变换对应的矩阵为(1)求矩阵;(2)求矩阵的特征值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据等差数列公式直接计算得到答案.【题目详解】依题意,故,故,故,故选:D【答案点睛】本题考查了等差数列的计算,意在考查学生的计算能力.2、D【答案解析】利

9、用复数的除法运算,化简复数,即可求解,得到答案【题目详解】由题意,复数,故选D【答案点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题3、C【答案解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【题目详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【答案点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.4、D【答案解析】由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【题目详解】解:,即,将和代入,得出,所以.故选

10、:D.【答案点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.5、B【答案解析】设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【题目详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【答案点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。6、B【答案解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【题目详解】解:作出不等式组对应的平面区域如

11、图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【答案点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键7、B【答案解析】将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【题目详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,共有360种.故选:B【答案点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.8、D【答案解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【题目详解】执行程序框图,可得,满足条件

12、,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.9、D【答案解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【题目详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24

13、)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【答案点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题10、B【答案解析】,故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 11、C【答案解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域

14、的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【题目详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【答案点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题12、A【答案解析】首先根据复数代数形式的除法运算求出,求出的模即可【题目详解】解:,故选:A【答案点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先把复数进行化简,然后利用求模公式可得结果.【题

15、目详解】故答案为:.【答案点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.14、【答案解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【题目详解】,.故答案为:.【答案点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.15、【答案解析】依题意可得、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【题目详解】解:依题意可得、四点共圆,所以因为,所以,所以三

16、角形为正三角形,则,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,且面面, 面所以面,所以外接球的半径所以故答案为:【答案点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.16、或【答案解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【答案点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17

17、、(1)1;(2)5.【答案解析】(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构建方程求得AB,再由任意三角形的面积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【题目详解】(1)据题意,且,所以.所以.在中,据正弦定理可知,所以.(2)在中,据正弦定理可知,所以.因为的面积为14,所以,即,得.在中,据余弦定理可知,所以.【答案点睛】本题考查由正弦定理与余弦定理解三角形,还考查了由同角三角函数关系和两角差的正弦公式化简求值,属于简单题.18、()直线的直角坐标方程为;曲线的普通方程为;().【答案解析】(I)利用参数

18、方程、普通方程、极坐标方程间的互化公式即可;(II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【题目详解】由可得直线的直角坐标方程为由曲线的参数方程,消去参数可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数).将直线的参数方程代入曲线的普通方程,并整理得.设是方程的两根,则有.【答案点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.19、(1)乙的技术更好,见解析(2),;【答案解析】(1)列出分布列,求出期望,比较大小即可;(2)直接根据概率的意义可得P0,P8;设每轮比赛甲得分为,求出每

19、轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【题目详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,所以,即乙的技术更好(2)表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率, 所以甲得时,最终获胜有以下三种情况:(1)下一轮得1分并最终获胜,概率为;(2)下一轮得0分并最终获胜,概率为;(3)下一轮得分并最终获胜,概率为;所以,所以是等差数列,则,即决赛甲获胜的概率是.【答案点睛

20、】本题考查离散型随机变量的分布列和期望,考查数列递推关系的应用,是一道难度较大的题目.20、(1).(2)【答案解析】(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t2)xtlnx0在x0时恒成立,构造函数g(x)x2+(t2)xtlnx,结合导数及函数的性质可求.【题目详解】(1),x0,由题意可得,0,解可得t4,易得,当x2,0 x1时,f(x)0,函数单调递增,当1x2时,f(x)0,函数单调递减,故当x1时,函数取得极大值f(1)3;(2)由f(x)x2+(t2)xtlnx+22在x0时恒成立可得,x2+(t2)xtlnx0在x0时恒成立,令g(x)x2+(t2)xtlnx,则,(i)当t0时,g(x)在(0,1)上单调递减,在(1,+)上单调递增,所以g(x)ming(1)t10,解可得t1,(ii)当2t0时,g(x)在()上单调递减,在(0,),(1,+)上单调递增,此时g(1)t11不合题意,舍去;(iii)当t2时,g(x)0,即g(x)在(0,+)上单调递增,此时g(1)3不合题意;(iv)当t2时,g(x)在(1,)上单调递减,在(0,1),()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论