天津二十五中学2023学年数学九上期末达标检测试题含解析_第1页
天津二十五中学2023学年数学九上期末达标检测试题含解析_第2页
天津二十五中学2023学年数学九上期末达标检测试题含解析_第3页
天津二十五中学2023学年数学九上期末达标检测试题含解析_第4页
天津二十五中学2023学年数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点( )AD 点BE 点CF点DD 点或 F点2二次函数yax2+bx+c(a0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c

2、m有实数根的条件是()Am4Bm0Cm5Dm63如图,AB为O的直径,点C、D在O上,BAC=50,则ADC为( )A40B50C80D1004如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y(k0)的图象经过点B、C和边EF的中点M若S正方形ABCD2,则正方形DEFG的面积为()ABC4D5抛物线的顶点坐标是( )A(2,0)B(-2,0)C(0,2)D(0,-2)6如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,

3、2)B(3,1)C(2,2)D(4,2)7二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:x32101y60466给出下列说法:抛物线与y轴的交点为(0,6);抛物线的对称轴在y轴的左侧;抛物线一定经过(3,0)点;在对称轴左侧y随x的增大而减增大从表中可知,其中正确的个数为( )A4B3C2D18如图,在正方形网格中,线段AB是线段AB绕某点顺时针旋转一定角度所得,点A与点A是对应点,则这个旋转的角度大小可能是()A45B60C90D1359下列图形中,既是轴对称图形又是中心对称图形的是( )A等边三角形B平行四边形C正五边形D圆10二次函数y=3(x2

4、)25与y轴交点坐标为( )A(0,2)B(0,5)C(0,7)D(0,3)二、填空题(每小题3分,共24分)11如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是_个.12如图,扇形OAB中,AOB60,OA4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE_13在 中, , ,点D在边AB上,且 ,点E在边AC上,当 _时,以A、D、E为顶点的三角形与 相似14九年级8班第一小组名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则的值是_15已知二

5、次函数y=x22mx(m为常数),当1x2时,函数值y的最小值为2,则m的值是_16为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是_小时睡眠时间(小时)6789学生人数864217如图,圆锥的底面直径,母线的中点处有一食物,一只小蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为_18将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为_三、解答题(共66分)19(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆

6、只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.20(6分)某企业生产并销售某种产品,整理出该商品在第()天的售价与函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件(1)试求出售价与之间的函数关系是;(2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的的取值范围21(6分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转如果这三种可能性的大

7、小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果22(8分)如图,BD为ABC外接

8、圆O的直径,且BAE=C(1)求证:AE与O相切于点A;(2)若AEBC,BC=2,AC=2,求AD的长23(8分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?24(8分)某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元

9、,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?25(10分)知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60方向行驶至B地,再沿北偏东53方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)(参考数据)26(10分)如图,已知抛物线(a0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,

10、且OC=OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,求点P的坐标参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点【详解】解:线段AB=60,AD=13,DE=17,EF=7,BD=60-13=47,AE=B

11、E=30,AF=37,BD:AB=47:600.783,AF:AB=37:60=0.617,点F最接近线段AB的黄金分割点故选:C【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中,并且线段AB的黄金分割点有两个2、A【解析】利用函数图象,当m1时,直线ym与二次函数yax2+bx+c有公共点,从而可判断方程ax2+bx+cm有实数根的条件【详解】抛物线的顶点坐标为(6,1),即x6时,二次函数有最小值为1,当m1时,直线ym与二次函数yax2

12、+bx+c有公共点,方程ax2+bx+cm有实数根的条件是m1故选:A【点睛】本题考查了图象法求一元二次方程的近似根:作出函数的图象,并由图象确定方程的解的个数;由图象与yh的交点位置确定交点横坐标的范围;3、A【解析】试题分析:先根据圆周角定理的推论得到ACB=90,再利用互余计算出B=40,然后根据圆周角定理求解解:连结BC,如图,AB为O的直径,ACB=90,BAC=50,B=9050=40,ADC=B=40故选A考点:圆周角定理4、B【分析】作BHy轴于H,连接EG交x轴于N,进一步证明AOD和ABH都是等腰直角三角形,然后再求出反比例函数解析式为y,从而进一步求解即可.【详解】作BH

13、y轴于H,连接EG交x轴于N,如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,EDF45,ADO45,DAOBAH45,AOD和ABH都是等腰直角三角形,S正方形ABCD2,ABAD,ODOAAHBH1,B点坐标为(1,2),把B(1,2)代入y得k122,反比例函数解析式为y,设DNa,则ENNFa,E(a+1,a),F(2a+1,0),M点为EF的中点,M点的坐标为(,),点M在反比例函数y的图象上,=2,整理得3a2+2a80,解得a1,a22(舍去),正方形DEFG的面积2ENDF2故选:B【点睛】本题主要考查了正方形的性质与反比例函数的综合运

14、用,熟练掌握相关概念是解题关键.5、A【分析】依据抛物线的解析式即可判断顶点坐标.【详解】解:抛物线,抛物线的顶点坐标为(2,0).故选A.【点睛】掌握抛物线y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键.6、A【详解】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A7、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=2时y=0,可得,解得,抛物线解析式为y=x2+x+6=(x)2+,当x=0时y=6,抛物线与y轴的交点为(0,6)

15、,故正确;抛物线的对称轴为x=,故不正确;当x=3时,y=9+3+6=0,抛物线过点(3,0),故正确;抛物线开口向下,在对称轴左侧y随x的增大而增大,故正确;综上可知正确的个数为3个,故选B考点:二次函数的性质8、C【分析】如图:连接AA,BB,作线段AA,BB的垂直平分线交点为O,点O即为旋转中心连接OA,OB,AOA即为旋转角【详解】解:如图:连接AA,BB,作线段AA,BB的垂直平分线交点为O,点O即为旋转中心连接OA,OB,AOA即为旋转角,旋转角为90故选:C【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键9、D【分析】根据轴对称图形与中心对称图形的概念求解如果一个图形

16、沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确故选:D【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键10、C【分析】由题意使x=0,求出相应的y的值即可求解.【详解】y=3(x2)25, 当x=0时,y=7

17、, 二次函数y=3(x2)25与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.二、填空题(每小题3分,共24分)11、【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个数,掌握三视图的知识是解题的关键.12、11【分析】连接OC,作EFOC于F,根据圆心角、弧、弦的关系定理得到AOC=30,根据等腰三角形的性质、三角形

18、内角和定理得到ECF=15,根据正切的定义列式计算,得到答案【详解】连接OC,作EFOC于F,点A关于直线CD的对称点为E,点E落在半径OA上,CE=CA,=,AOC=AOB=30,OA=OC,OAC=OCA=75,CE=CA,CAE=CEA=75,ACE=30,ECF=OCA-ACE=75-30=15,设EF=x,则FC=x,在RtEOF中,tanEOF=,OF=,由题意得,OF+FC=OC,即x+x=1,解得,x=22,EOF=30,OE=2EF=11,故答案为:11【点睛】本题考查了圆心角、弧、弦的关系、解直角三角形的应用、三角形内角和定理,掌握锐角三角函数的定义是解题的关键13、【解析

19、】当时,A=A,AEDABC,此时AE=;当时,A=A,ADEABC,此时AE=;故答案是:.14、1【分析】根据题意列出方程,求方程的解即可【详解】根据题意可得以下方程 解得 (舍去)故答案为:1【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键15、1.5或2【解析】将二次函数配方成顶点式,分m-1、m2和-1m2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】y=x2-2mx=(x-m)2-m2,若m-1,当x=-1时,y=1+2m=-2,解得:m=-32=-1.5;若m2,当x=2时,y=4-4m=-2,解得:m=322(舍);若-1m2,

20、当x=m时,y=-m2=-2,解得:m=2或m=-2-1(舍),m的值为-1.5或2,故答案为:1.5或【点睛】本题考查了二次函数的最值,根据二次函数的增减性分类讨论是解题的关键16、1【解析】根据中位数的定义进行求解即可【详解】共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,这些测试数据的中位数是=1小时;故答案为:1【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)17、15【分析】先将圆锥的侧面展开图画出来,然后根据弧长公式求出的度数,然后利用等边三角形的性质和特殊角的三角函数在即可求出A

21、D的长度【详解】圆锥的侧面展开图如下图:圆锥的底面直径底面周长为 设 则有 解得 又 为等边三角形为PB中点 蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为故答案为:【点睛】本题主要考查圆锥的侧面展开图,弧长公式和解直角三角形,掌握弧长公式和特殊角的三角函数值是解题的关键18、【分析】设半圆圆心为O,连OA,OB,则AOB863056,根据圆周角定理得ACBAOB,即可得到ACB的大小【详解】设半圆圆心为O,连OA,OB,如图,ACBAOB,而AOB863056,ACB5628故答案为:28【点睛】本题考查了圆周角定理在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所

22、对的圆心角的一半三、解答题(共66分)19、(1)12m或16m;(2)195.【分析】(1)、根据AB=x可得BC=28x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.【详解】(1)、AB=xm,则BC=(28x)m, x(28x)=192,解得:x1=12,x2=16, 答:x的值为12m或16m(2)、AB=xm, BC=28x, S=x(28x)=x2+28x=(x14)2+196,在P处有一棵树与墙CD,AD的距离分别是16m和6m,28-x15,x6 6x13,当x=13时,S取到最大值

23、为:S=(1314)2+196=195,答:花园面积S的最大值为195平方米【点睛】题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键20、(1);(2)6050;(3)【分析】(1)当1x50时,设商品的售价y与时间x的函数关系式为ykxb,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50 x90时,y90;(2)根据W关于x的函数关系式,分段考虑其最值问题当1x50时,结合二次函数的性质即可求出在此范围内W的最大值;当50 x90时,根据一次函数的性质即可求出在此范围内W的最大值,两个最大值作比较即可得出结论;(3)分当时与当时利

24、用二次函数与一次函数的性质进行得到的取值范围【详解】(1)当时,设图象过(0,40),(50,90),解得,(2)当时,当时,元;当时,当时,元,当时,元(3)当时,令,解得:,当时,利润不低于3600元;当时,即,解得,此时;综上,当时,利润不低于3600元【点睛】本题考查了一次函数的应用、二次函数的性质以及待定系数法求一次函数解析式,解题的关键是:分段找出y关于x的函数关系式;根据销售利润单件利润销售数量找出W关于x的函数关系式;再利用二次函数的性质解决最值问题21、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步完成,所以画出树状

25、图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可试题解析:题1:画树状图得:一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:题2:列表得:锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把

26、锁,一次打开锁的2种,则P=问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)考点:随机事件22、(1)证明见解析;(2)AD=2【解析】(1)如图,连接OA,根据同圆的半径相等可得:D=DAO,由同弧所对的圆周角相等及已知得:BAE=DAO,再由直径所对的圆周角是直角得:BAD=90,可得结论;(2)先证明OABC,由垂径定理得:,FB=BC,根

27、据勾股定理计算AF、OB、AD的长即可【详解】(1)如图,连接OA,交BC于F,则OA=OB,D=DAO,D=C,C=DAO,BAE=C,BAE=DAO,BD是O的直径,BAD=90,即DAO+BAO=90,BAE+BAO=90,即OAE=90,AEOA,AE与O相切于点A;(2)AEBC,AEOA,OABC,FB=BC,AB=AC,BC=2,AC=2,BF=,AB=2,在RtABF中,AF=1,在RtOFB中,OB2=BF2+(OBAF)2,OB=4, BD=8,在RtABD中,AD=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”23、(1)见解析(2)P(积为奇数)=【分析】(1)用树状图列举出2次不放回实验的所有可能情况即可;(2)看是奇数的情况占所有情况的多少即可【详解】(1)(2)P(积为奇数)=24、 (1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【分析】(1)根据题意,可以得到关于x的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题【详解】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论