




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1如图是二次函数yax2+bx+c(a0)的图象的一部分,给出
2、下列命题:a+b+c0;b2a;ax2+bx+c0的两根分别为3和1;c3a,其中正确的命题是()ABCD2若x1是关于x的一元二次方程ax2+bx20(a0)的一个根,则20192a+2b的值等于()A2015B2017C2019D20223如图,保持ABC的三个顶点的横坐标不变,纵坐标都乘1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A关于x轴对称B关于y轴对称C将原图形沿x轴的负方向平移了1个单位D将原图形沿y轴的负方向平移了1个单位4如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.7
3、5、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240.91,tan24=0.45)()A21.7米B22.4米C27.4米D28.8米5李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )ABCD6设抛物线的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 ( )ABCD (a为任意常数)7如图所示的中心对称图形中,对
4、称中心是( )ABCD8如图,在某监测点B处望见一艘正在作业的渔船在南偏西15方向的A处,若渔船沿北偏西75方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60方向上,则B、C之间的距离为( ).A20海里B10海里C20海里D30海里9下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A1个B2个C3个D4个10如图是由5个完全相同的正方体组成的立体图形,它的主视图是( )ABCD二、填空题(每小题3分,共24分)11分式方程1的解为_12如图,AC是O的直径,ACB=60,连接AB,过A、B两点分别作O的切线,两切线交于点P若已知O的半径为1,则P
5、AB的周长为_13关于的方程的一个根是,则它的另一个根是_14如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为_15如图,已知中,点、分别是边、上的点,且,且,若,那么_16若长方形的长和宽分别是关于 x 的方程的两个根,则长方形的周长是_17如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 18如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:
6、 2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1 , 其中正确的是_三、解答题(共66分)19(10分)随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡的坡角为,水平线.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到,参考数据:,)20(6分)如图,在中,点在边上,点在边上,且是的直径,的平分线与相交于点.(1)证明:直线是的切线;(2)连
7、接,若,求边的长.21(6分)如图,是的直径,且,点为外一点,且,分别切于点、两点与的延长线交于点(1)求证:;(2)填空:当_时,四边形是正方形当_时,为等边三角形22(8分)在平面直角坐标系中,已知抛物线yx22ax+4a+2(a是常数),()若该抛物线与x轴的一个交点为(1,0),求a的值及该抛物线与x轴另一交点坐标;()不论a取何实数,该抛物线都经过定点H求点H的坐标;证明点H是所有抛物线顶点中纵坐标最大的点23(8分)在矩形中,是射线上的点,连接,将沿直线翻折得(1)如图,点恰好在上,求证:;(2)如图,点在矩形内,连接,若,求的面积;(3)若以点、为顶点的三角形是直角三角形,则的长
8、为 24(8分)电影我和我的祖国在国庆档热播,预售票房成功破两亿,堪称热度最高的爱国电影,周老师打算从非常渴望观影的5名学生会干部(两男三女)中,抽取两人分别赠送一张的嘉宾观影卷,问抽到一男一女的概率是多少?(请你用树状图或者列表法分析)25(10分)如图,在平面直角坐标系中,直线与直线,交点的横坐标为,将直线,沿轴向下平移个单位长度,得到直线,直线,与轴交于点,与直线,交于点,点的纵坐标为,直线;与轴交于点(1)求直线的解析式;(2)求的面积26(10分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线 经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点, 抛物线
9、与x轴另一个交点为D(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由参考答案一、选择题(每小题3分,共30分)1、D【分析】观察图象可得,当x1时,y0,即a+b+c0;对称轴x1,即1,b2a;抛物线与x轴的一个交点为(1,0),对称轴为x1,即可得ax2+bx+c0的两根分别为3和1;当x1时,y0,即a+b+c0,对称轴x1,即1,b2a,即可得c3a【详解】解:观察图象可知:当x1时,y0,即a+b+c0,正确;对称轴
10、x1,即1,b2a,错误;抛物线与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一个交点为(3,0)ax2+bx+c0的两根分别为3和1,正确;当x1时,y0,即a+b+c0,对称轴x1,即1,b2a,c3a,正确所以正确的命题是故选:D【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键2、A【分析】将x1代入方程得出ab2,再整体代入计算可得【详解】解:将x1代入方程,得:ab20,则ab2,原式20192(ab)201922201942015故选:A【点睛】本题主要考查一元二次方程的解,解题的关键是掌握方程的解的概念及整体代入思想
11、的运算3、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称【详解】解:纵坐标乘以1,变化前后纵坐标互为相反数,又横坐标不变,所得三角形与原三角形关于x轴对称故选:A【点睛】本题考查平面直角坐标系中对称点的规律解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数4、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,再根据tan24=,构建方程即可解决问题.【
12、详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、B【分析】根据相似三角形的判定定理,即可得到答案【详解】DEBC,B=ADE,DFAC,A=BDF,ADEDBF故选:B【点睛】本题主要考查三角形相似的判定定理,掌握“有两
13、个角对应相等的两个三角形相似”是解题的关键6、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.7、B【分析】直接利用中心对称图形的性质得出答案【详解】解:如图所示的中心对称图形中,对称中心是O1故选:B【点睛】本题考查中心
14、对称图形,解题关键是熟练掌握中心对称图形的性质.8、C【分析】如图,根据题意易求ABC是等腰直角三角形,通过解该直角三角形来求BC的长度【详解】如图,ABE=15,DAB=ABE,DAB=15,CAB=CAD+DAB=90又FCB=60,CBE=FCB=60,CBA+ABE=CBE,CBA=45在直角ABC中,sinABC=,BC=20海里故选C考点:解直角三角形的应用-方向角问题9、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:从左数第一、四个是轴对称图形,也是中心对称图形第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形故选B【点睛】本题考查了中心对称
15、图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【分析】主视图就是从正面看,根据横竖正方形的个数可以得到答案.【详解】主视图就是从正面看,视图有2层,一层3个正方形,二层左侧一个正方形. 故选B【点睛】本题考核知识点:三视图.解题关键点:理解三视图意义.二、填空题(每小题3分,共24分)11、x2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:2+x1x21,即x2x20,分解因式得:(x2)(x+1)0,解得:x2或x1,经检验x1是增根
16、,分式方程的解为x2,故答案为:x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验12、 【解析】根据圆周角定理的推论及切线长定理,即可得出答案解:AC是O的直径,ABC=90,ACB=60,BAC=30,CB=1,AB=,AP为切线,CAP=90,PAB=60,又AP=BP,PAB为正三角形,PAB的周长为3点睛:本题主要考查圆周角定理及切线长定理.熟记圆的相关性质是解题的关键.13、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次
17、方程的两根之和与两根之积与其系数的关系是解此类题的关键.14、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率【详解】解:因为蓝色区域的圆心角的度数为120,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率计算方法是利用长度比,面积比,体积比等15、【分析】根据平行线分线段成比例定理列出比例式,得到AE:EC=AD:DB=1:2,BF:FC=AE:EC=1:2,进行分析计算即可【详解】解:DEBC,AE:EC=AD:DB=1:2,EFAB,BF:FC=AE:EC=1:2,CF=9,BF=.故答案为:
18、【点睛】本题考查的是平行线分线段成比例定理,熟练掌握并灵活运用定理并找准对应关系是解题的关键16、6【分析】设长方形的长为a,宽为b,根据根与系数的关系得a+b=3,即可得到结论【详解】解:设长方形的长为a,宽为b,根据题意得,a+b=3,所以长方形的周长是2(a+b)=6.故答案为:6.【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=.17、【详解】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以18、【解析】根据拋物线的开口方向以及对称轴为x=1,即可得出a、b之间的关系以及ab的正负,由此得出正确,根据抛物线与
19、y轴的交点在y轴正半轴上,可知c为正结合a0即可得出错误,将抛物线往下平移3个单位长度可知抛物线与x轴只有一个交点从而得知正确,根据拋物线的对称性结合抛物线的对称轴为x=1以及点B的坐标,即可得出抛物线与x轴的另一交点坐标,正确,根据两函数图象的上下位置关系即可解题.【详解】抛物线的顶点坐标A(1,3),对称轴为x=-=1,2a+b=0,正确,a,b,抛物线与y轴交于正半轴,cabc0,错误,把抛物线向下平移3个单位长度得到y= ax2+bx+c-3,此时抛物线的顶点也向下平移3个单位长度,顶点坐标为(1,0),抛物线与x轴只有一个交点,即方程ax2+bx+c=3有两个相等的实数根, 正确.对
20、称轴为x=-=1,与x轴的一个交点为(4,0),根据对称性质可知与x轴的另一个交点为(-2,0),错误,由抛物线和直线的图像可知,当1x4时,有y2y1., 正确.【点睛】本题考查了二次函数的图像和性质,熟悉二次函数的性质是解题关键.三、解答题(共66分)19、2.6米【分析】根据锐角三角函数关系得出CF以及DF的长,进而得出DE的长即可得出答案【详解】过点D作DEAB于点E,延长CD交AB于点F 在ACF中,ACF=90,CAF=20,AC=12,(m),(m),在DFE中,又DEAB,(m),答: 地下停车库坡道入口限制高度约为2.6m【点睛】本题考查了解直角三角形的应用,主要是余弦、正切
21、概念及运算,关键把实际问题转化为数学问题加以计算20、(1)见解析;(2)12【分析】(1)连接OD,AD是CAB的平分线,以及OA=DO,推出CAD=ODA,进而得出ODAC,最后根据C=90可得出结论;(2)因为B=30,所以CAB=60,结合(1)可得ACOD,证明ODE是等边三角形,进而求出OA的长再在RtBOD中,利用含30直角三角形的性质求出BO的长,从而得出结论【详解】解:(1)证明:连接 平分CAB,在中,ACOD中,直线为圆的切线;(2)解:如图,中,,由(1)可得:ACOD, ,为等边三角形,由(1)可得,又,在中,【点睛】本题考查的是切线的判定与性质,等边三角形的判定,含
22、30的直角三角形的性质等知识,在解答此类题目时要注意添加辅助线,构造直角三角形21、(1)见解析;(2);【分析】(1)由切线长定理可得MC=MA,可得MCA=MAC,由余角的性质可证得 DM=CM;(2)由正方形性质可得CM=OA=3; 由等边三角形的性质可得D=60,再由直角三角形的性质可求得答案.【详解】证明:(1)如图,连接,分别切于点、两点,是直径,(2)四边形是正方形,当时,四边形是正方形,若是等边三角形,且,当时,为等边三角形【点睛】本题是圆的综合题,考查了切线长定理,直角三角形的性质,正方形的性质,等边三角形的性质等知识,熟练运用这些性质进行推理是正确解答本题的关键.22、()
23、a,抛物线与x轴另一交点坐标是(0,0);()点H的坐标为(2,6);证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)根据题目中的函数解析式可以求得点H的坐标;将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点【详解】()抛物线yx22ax+4a+2与x轴的一个交点为(1,0),0(1)22a(1)+4a+2,解得,a,yx2+xx(x+1),当y0时,得x10,x21,即抛物线与x轴另一交点坐标是(0,0);()抛物线yx22ax+4a+2x2+22a(x2),不论a取何实
24、数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);证明:抛物线yx22ax+4a+2(xa)2(a2)2+6,该抛物线的顶点坐标为(a,(a2)2+6),则当a2时,(a2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答23、(1)见解析;(2)的面积为;(3)、5、1、【分析】(1)先说明CEF=AFB和,即可证明;(2)过点作交与点,交于点,则;再结合矩形的性质,证得FGEAHF,得到AH=5GF;然后运用勾股定理求得GF的长
25、,最后运用三角形的面积公式解答即可;(3)分点E在线段CD上和DC的延长线上两种情况,然后分别再利用勾股定进行解答即可【详解】(1)解:矩形中,由折叠可得在和中,(2)解:过点作交与点,交于点,则矩形中,由折叠可得:,在和中在中,的面积为(3)设DE=x,以点E、F、C为顶点的三角形是直角三角形,则:当点E在线段CD上时,DAE45,由折叠性质得:AEF=AED45,DEF=AED+AEF90,CEF90,只有EFC=90或ECF=90,a,当EFC=90时,如图所示:由折叠性质可知,AFE=D=90,AFE+EFC=90,点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在RtACD中
26、,AD=5,CD=AB=3,根据勾股定理得,AC=,由折叠可知知,EF=DE=x,AF=AD=5,CF=AC-AF=-5,在RtECF中,EF2+CF2=CE2,x2+(-5)2=(3-x)2,解得x=即:DE=b,当ECF=90时,如图所示: 点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在RtABF中,根据勾股定理得,BF=4,CF=BC-BF=1,在RtECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=,即:DE=;当点E在DC延长线上时,CF在AFE内部,而AFE=90,CFE90,只有CEF=90或ECF=90,a、当CEF=90时,如图所
27、示由折叠知,AD=AF=5,AFE=90=D=CEF,四边形AFED是正方形,DE=AF=5;b、当ECF=90时,如图所示:ABC=BCD=90,点F在CB的延长线上,ABF=90,由折叠知,EF=DE=x,AF=AD=5,在RtABF中,根据勾股定理得,BF=4,CF=BC+BF=9,在RtECF中,根据勾股定理得,CE2+CF2=EF2,(x-3)2+92=x2,解得x=1,即DE=1,故答案为、5、1【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键24、【分析】列举出所有等情况和抽到一
28、男一女的情况数,再根据概率公式即可得出答案【详解】设三个女生记为,两个男生记为,列表如下:有且只有以上20种情形,它们发生的机会均等,抽到一男一女有12种情形,(一男一女)=【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比25、(1)y=x+4;(2)1【分析】(1)把x=2代入y=x,得y=1,求出A(2,1)根据平移规律得出直线l3的解析式为y=x4,求出B(0,4)、C(4,2)设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;(2)根据直线l2的解析式求出D(0,4),得出B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨界合作新能源汽车充电服务区域合作协议
- 邻居间房屋相邻权及安全保障协议
- 拌合站罐车安全协议书
- 茶房合作协议书
- 部门交接协议书
- 策划宣传协议书
- 研磨介质协议书
- 房屋免打孔分割协议书
- 终止探望协议书
- 姑娘和婆婆同住协议书
- 2025年《高级养老护理员》考试练习题库含答案
- 委托寻找房源协议书
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 《机械制造技术基础》期末考试试卷及答案
- 2024建安杯信息通信建设行业安全竞赛题库(试题含答案)
- 检验项目危急值一览表
- DB37T 4514-2022 1:50 000水文地质调查规范
- 部编版语文六年级下册教材课后习题答案
- 肿瘤患者的心理护理ppt
- 人格权法完整版教学课件-整套教程电子讲义(最全最新)
- 解一元一次方程移项合并同类项
评论
0/150
提交评论