北京市怀柔区2023学年数学九年级第一学期期末调研试题含解析_第1页
北京市怀柔区2023学年数学九年级第一学期期末调研试题含解析_第2页
北京市怀柔区2023学年数学九年级第一学期期末调研试题含解析_第3页
北京市怀柔区2023学年数学九年级第一学期期末调研试题含解析_第4页
北京市怀柔区2023学年数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图连结AE、AF、BE、BF,如图经过以上操作,

2、小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;:以上结论正确的有 A1个B2个C3个D4个2已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x33如图,在ABC中,中线AD、BE相交于点F,EGBC,交AD于点G,则的值是( )ABCD4如图,在ABC中,AB=5,AC=3,BC=4,将ABC绕A逆时针方向旋转40得到ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A6BC3D+5下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时

3、间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件6宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GHAD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A矩形ABFEB矩形EFCDC矩形EFGHD矩形DCGH7如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k0,x0)的图象同时经过顶点

4、C,D若点C的横坐标为5,BE=3DE,则k的值为()ABC3D58若关于的一元二次方程有两个相等的实数根,则的值为( )ABCD9如图,在RtABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为( )ABCD10在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk1二、填空题(每小题3分,共24分)11如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,与AD交于点F,则CDF的面积为_12如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60得到线段BQ,连接AQ若PA=4,PB=5,PC=3

5、,则四边形APBQ的面积为_13如图,在平面直角坐标系中,函数和的图象分别为直线,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的坐标为_.14二次函数的图象与轴只有一个公共点,则的值为_15将一元二次方程写成一般形式_16若,则锐角的度数是_17二次函数y=x2+bx+c的图象上有两点(3,4)和(5,4),则此抛物线的对称轴是直线x=_18分解因式:=_三、解答题(共66分)19(10分)小明和同学们在数学实践活动课中测量学校旗杆的高度如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为,看旗杆底部的俯角是为,

6、教学楼与旗杆的水平距离是,旗杆有多高(结果保留整数)?(已知,)20(6分)(1)问题发现如图1,在中,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为_;(2)拓展探究在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;(3)问题解决当正方形旋转到三点共线时,直接写出线段的长21(6分)在平面直角坐标系中,二次函数 yax2bx2 的图象与 x 轴交于 A(3,0),B(1,0)两点,与 y 轴交于点C (1)求这个二次函数的关系解析式 ,x 满足什么值时 y0 ? (2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P

7、,使ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由 (3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由22(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法

8、或画树状图法,求甲、乙两名男生同时被选中的概率23(8分)如图,中,为内部一点,求证:24(8分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度25(10分)如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦

9、CD的距离;(2)当DFDB=CD2时,求CBD的大小;(3)若AB=2AE,且CD=12,求BCD的面积26(10分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号)参考答案一、选择题(每小题3分,共30分)1、D【分析】根据折叠的性质可得BMD=BNF=90,然后利用同位角相等,两直线平行可得CDEF,从而判定正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四

10、边形是菱形求出四边形MEBF是菱形,从而得到正确;根据直角三角形角所对的直角边等于斜边的一半求出MEN=30,然后求出EMN=60,根据等边对等角求出AEM=EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出AEM=30,从而得到AEF=60,同理求出AFE=60,再根据三角形的内角和等于180求出EAF=60,从而判定AEF是等边三角形,正确;设圆的半径为r,求出EN= ,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以正确【详解】解:纸片上下折叠A、B两点重合, BMD=90, 纸片沿EF折叠,B、M两点重合, BNF=90, BMD=BNF=90,

11、CDEF,故正确; 根据垂径定理,BM垂直平分EF, 又纸片沿EF折叠,B、M两点重合, BN=MN, BM、EF互相垂直平分, 四边形MEBF是菱形,故正确; ME=MB=2MN, MEN=30, EMN=90-30=60, 又AM=ME(都是半径), AEM=EAM, AEM=EMN=60=30, AEF=AEM+MEN=30+30=60, 同理可求AFE=60, EAF=60, AEF是等边三角形,故正确; 设圆的半径为r,则EN=, EF=2EN=, S四边形AEBF:S扇形BEMF=故正确, 综上所述,结论正确的是共4个 故选:D【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平

12、行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质注意掌握折叠前后图形的对应关系是关键2、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象1061443、C【分析】先证明AG=GD,得到GE为ADC的中位线,由三角形的中位线可得GEDCBD;由EGBC,可证GEFBDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案【详解】E为AC中点,EGBC,AG=GD,GE为ADC的中位线,GEDCBDEGBC,GE

13、FBDF,FD=2GF设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,故选:C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键4、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到AED的面积=ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可【详解】解:AB=5,AC=3,BC=4,ABC为直角三角形,由题意得,AED的面积=ABC的面积,由图形可知,阴影部分的面积=AED的面积+扇形ADB的面积ABC的面积,阴影部

14、分的面积=扇形ADB的面积=,故选B【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键5、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键6、D【分析】先根据正方形的性质以及勾

15、股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,矩形DCGH为黄金矩形故选:D【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形7、B【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值【详解】过点D做DFBC于F,由已知,BC=5,四边形ABCD是菱形,DC=5,BE=3DE,设DE=x,则BE=3x,DF=3x,BF=x,FC=5-x

16、,在RtDFC中,DF2+FC2=DC2,(3x)2+(5-x)2=52,解得x=1,DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),点D、C在双曲线上,1(a+3)=5a,a=, 点C坐标为(5,)k=.故选B【点睛】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质解题关键是通过勾股定理构造方程8、B【分析】若一元二次方程有两个相等的实数根,则根的判别式b24ac0,建立关于k的等式,求出k【详解】解:方程有两个相等的实数根,b24ac6241k364k0,解得:k1故选:B【点睛】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别

17、式的关系:(1)0时,方程有两个不相等的实数根;(2)0时,方程有两个相等的实数根;(3)0时,方程没有实数根9、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA【详解】解:CD是RtABC斜边AB上的中线,AB=2CD=4,cosA=.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数掌握直角三角形斜边的中线与斜边的关系是解决本题的关键在直角三角形中,斜边的中线等于斜边的一半10、A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根

18、据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大二、填空题(每小题3分,共24分)11、【分析】首先判断出AB、BC是O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:DAB=ABC=90,AB、BC是O的切线,CF是O的切线,AF=EF,BC=EC,FC=AF+DC,设AF=x,则,DF=2-x,CF=2+x,在RTDCF中,

19、CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=,DF=2-=,故答案为:.【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键12、【分析】由旋转的性质可得BPQ是等边三角形,由全等三角形的判定可得ABQCBP(SAS),由勾股定理的逆定理可得APQ是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可【详解】解:连接PQ,由旋转的性质可得,BP=BQ,又PBQ=60,BPQ是等边三角形,PQ=BP,在等边三角形ABC中,CBA=60,AB=BC,ABQ=60-ABPCBP=60-ABPABQ=CBP在ABQ与CBP中 ,A

20、BQCBP(SAS),AQ=PC,又PA=4,PB=5,PC=3,PQ=BP=5,PC=AQ=3,在APQ中,因为,25=16+9,由勾股定理的逆定理可知APQ是直角三角形,故答案为:【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解13、【解析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-2

21、2n+2)(n为自然数)”,依此规律结合2019=5044+3即可找出点A2019的坐标【详解】解:当x=1时,y=2,点A1的坐标为(1,2);当y=-x=2时,x=-2,点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)2019=5044+3,点A2019的坐标为(-25042+1,-25042+2),

22、即(-21009,-21010)故答案为(-21009,-21010)【点睛】本题考查一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键14、【解析】根据=b2-4ac=0时,抛物线与x轴有1个交点得到=(-2)2-4m=0,然后解关于m的方程即可【详解】根据题意得=(-2)2-4m=0,解得m=1故答案是:1【点睛】考查了抛物线与x轴的交点:对于二次函数y=ax2+bx

23、+c(a,b,c是常数,a0),=b2-4ac决定抛物线与x轴的交点个数:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点15、【分析】先去括号,然后移项,最后变形为一般式【详解】故答案为:【点睛】本题考查完全平方公式、去括号和移项,需要注意,移项是需要变号的16、45【分析】直接利用特殊角的三角函数值得出答案【详解】解:,45故答案为:45【点睛】本题考查的知识点特殊角的三角函数值,理解并熟记特殊角的三角函数值是解题的关键.17、-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=

24、-1对称,由此可得到抛物线的对称轴【详解】点(3,4)和(-5,4)的纵坐标相同,点(3,4)和(-5,4)是抛物线的对称点,而这两个点关于直线x=-1对称,抛物线的对称轴为直线x=-1故答案为-1【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-18、【解析】分析:利用平方差公式直接分解即可求得答案解答:解:a2-b2=(a+b)(a-b)故答案为(a+b)(a-b)三、解答题(共66分)19、旗杆的高约是【分析】过点B作于点,由题意知,根据锐角三角函数即可分别求出AC和CD,从而求出结论【详解】解:过点B作于点,由题意知,m,m,m

25、,答:旗杆的高约是【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键20、(1);(2)无变化,说明见详解;(3)或【分析】(1)先利用等腰直角三角形的性质得出AB=AD,再得出AD=AF,即可得出结论;(2)先利用等腰直角三角形和正方形的性质得:,并证明夹角相等即可得出ACFBCE,进而得出结论;(3)分当点E在线段BF上时和当点E在线段BF的延长线上时讨论即可求得线段的长【详解】解:(1)在RtABC中,AB=AC,D是BC的中点,AD=BC=BD,ADBC,ABD是等腰直角三角形,AB=AD,正方形CDEF,DE=EF,当点E恰好与点A重合,AB=A

26、D=AF,即BE=AF,故答案为:BE=AF; (2)无变化;如图2,在中,在正方形中,在中,在和中线段和的数量关系无变化(3) 或.当点E在线段BF上时,如图2,正方形,由(1)知AB=AD=AF,CF=EF=CD=2,在RtBCF中,CF=2,BC=4,根据勾股定理得,BF=,BE=BF-EF=-2,由(2)得,AF=;当点E在线段BF的延长线上时,如图,同理可得,BF=,BE=BF+EF=+2,AF=,综上所述,当正方形旋转到三点共线时,线段的长为或【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解题的键是判断出ACFBCE2

27、1、(1), 或;(2)P;(3)【分析】(1)将点A(3,0),B(1,0)带入yax2bx2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y0;(2)设出P点坐标,利用割补法将ACP 面积转化为,带入各个三角形面积算法可得出与m之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.【详解】解:(1)将A(3,0),B(1,0)两点带入yax2bx2可得:解得:二次函数解析式为.由图像可知,当或时y0;综上:二次函数解

28、析式为,当或时y0;(2)设点P坐标为,如图连接PO,作PMx轴于M,PNy轴于N.PM=,PN=,AO=3.当时,所以OC=2,函数有最大值,当时,有最大值,此时;所以存在点,使ACP 面积最大.(3)存在,假设存在点Q使以 A、C、M、Q 为顶点的四边形是平行四边形若CM平行于x轴,如下图,有符合要求的两个点此时=CMx轴,点M、点C(0,2)关于对称轴对称,M(2,2),CM=2.由=;若CM不平行于x轴,如下图,过点M作MGx轴于点G,易证MGQCOA,得QG=OA=3,MG=OC=2,即.设M(x,2),则有,解得:.又QG=3,,综上所述,存在点P使以 A、C、M、Q 为顶点的四边

29、形是平行四边形,Q点坐标为:.【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.22、(1)2、45、20;(2)72;(3) 【解析】分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案详解:(1)本次调查的总人数为

30、1230%=40人,a=405%=2,b=100=45,c=100=20,(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为36020%=72,(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握23、详见解析【分析】利用等式的性质判断出PBC=PAB,即可得出结论;【详解】解:,又,,又,【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出PBC=PAB是解本题的关键24、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+1条竖彩条面积横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可【详解】(1)根据题意可知,横彩条的宽度为xcm,y=10 x+111x1xx=3x1+54x,即y与x之间的函数关系式为y=3x1+54x;(1)根据题意,得:3x1+54

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论