版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1下列说法正确的是( )A一组对边相等且有一个角是直角的四边形是矩形B对角线互相垂直的四边形是菱形C对角线相等且互相垂直的四边形是正方形D对角线平分一组对角的平行四边形是菱形2小苏和小林在如图所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:
2、与跑步时间单位:的对应关系如图所示下列叙述正确的是( )A两人从起跑线同时出发,同时到达终点;B小苏跑全程的平均速度大于小林跑全程的平均速度;C小苏前15s跑过的路程大于小林前15s跑过的路程;D小林在跑最后100m的过程中,与小苏相遇2次;3下列图形中,不是轴对称图形的是()ABCD4如图,ABC内接于圆O,A=50,ABC=60,BD是圆O的直径,BD交AC于点E,连结DC,则AEB等于( )A70B110C90D1205在正方形ABCD中,AB3,点E在边CD上,且DE1,将ADE沿AE对折到AFE,延长EF交边BC于点G,连接AG,CF下列结论,其中正确的有()个(1)CGFG;(2)
3、EAG45;(3)SEFC;(4)CFGEA1B2C3D46下列一元二次方程中,没有实数根的是( )ABCD7九章算术总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响. 在九章算术中有很多名题,下面就是其中的一道. 原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点. 寸,寸,则可得直径的长为( )A13寸B26寸C18寸D24寸8有一组数据5,3,5,6,7,这组数据的众数为( )A3B6C5D79如图,已知梯形ABCO的底边AO在轴上,BCAO,ABAO,过点C的双曲线交OB于D
4、,且OD:DB=1:2,若OBC的面积等于3,则k的值()A等于2B等于 C等于 D无法确定10如图所示的物体组合,它的左视图是( )ABCD11关于x的一元二次方程的根的情况是()A有两个不相等的实数根B没有实数根C有两个相等的实数根D不确定12已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点( )AD 点BE 点CF点DD 点或 F点二、填空题(每题4分,共24分)13已知反比例函数,当_时,其图象在每个象限内随的增大而增大14公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题并建立起比例理论,他认为
5、所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比所谓黄金矩形指的就是矩形的宽与长的比适合这一比例则在黄金矩形中宽与长的比值是_15如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为_米.16将半径为12,圆心角为的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为_17在平面坐标系中,第1个正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作第2个正方形,延长交轴于点;作第3个正方形,按这样的规律进行下去,第5个正方形的边长为_. 18方程(x+5)24的两个根分别为_三、解答题(共78分)19(8分)在一个不透明的口袋中装有1个红球
6、,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率20(8分)如图,在RtABC中,C=90,以BC为直径的O交斜边AB于点M,若H是AC的中点,连接MH(1)求证:MH为O的切线(2)若MH=,tanABC=,求O的半径(3)在(2)的条件下分别过点A、B作O的切线,两切线交于点D,AD与O相切于N点,过N点作NQBC,垂足为E,且交O于Q点,求线段NQ的长度21(8分)如图,ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2
7、),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出ABC向下平移5个单位得到的A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出A2B2C2,使A2B2C2与ABC位似,且位似比为1:2,直接写出点C2的坐标和A2B2C2的面积22(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60沿坡面AB向上走到B处测得广告牌顶部C的仰角为45,已知山坡AB的坡度i=1:,AB=10米,AE=15米(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度(测角器的高度忽
8、略不计,结果精确到0.1米参考数据:1.414,1.732)23(10分)已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标; (3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.24(10分)先化简,再选择一个恰当的数代入后求值25(12分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与
9、之比称为惊喜度(Degree of surprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.26阅读材料:小胖同学遇到这样一个问题,如图1,在ABC中,ABC45,AB2,ADAE,DAE90,CE,求CD的长;小胖经过思考后,在CD上取点F使得DEFADB(如图2),进而得到EFD45,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现
10、CEFCDE(1)请按照小胖的思路完成这个题目的解答过程(2)参考小胖的解题思路解决下面的问题:如图3,在ABC中,ACBDACABC,ADAE,EAD+EBD90,求BE:ED参考答案一、选择题(每题4分,共48分)1、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确故选:D【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考
11、题型2、D【分析】依据函数图象中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系,即可得到正确结论【详解】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D【点睛】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析
12、得出函数的类型和所需要的条件,结合实际意义得到正确的结论3、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.4、B【解析】解:由题意得,A=D=50,DCB=90,DBC=40,ABC=60,ABD=20,AEB=180- ABD - D = 110,故选B5、C【分析】(1)根据翻折可得ADAFAB
13、3,进而可以证明ABGAFG,再设CGx,利用勾股定理可求得x的值,即可证明CGFG;(2)由(1)ABGAFG,可得BAGFAG,进而可得EAG45;(3)过点F作FHCE于点H,可得FHCG,通过对应边成比例可求得FH的长,进而可求得SEFC;(4)根据(1)求得的x的长与EF不相等,进而可以判断CFGE.【详解】解:如图所示:(1)四边形ABCD为正方形,ADABBCCD3,BADBBCDD90,由折叠可知:AFAD3,AFED90,DEEF1,则CE2,ABAF3,AGAG,RtABGRtAFG(HL),BGFG,设CGx,则BGFG3x,EG4x,EC2,根据勾股定理,得在RtEGC
14、中,(4x)2x2+4,解得x,则3x, CGFG,所以(1)正确;(2)由(1)中RtABGRtAFG(HL),BAGFAG,又DAEFAE,BAG+FAG+DAE+FAE90,EAG45,所以(2)正确;(3)过点F作FHCE于点H,FHBC,,即1:(+1)FH:(),FH,SEFC2,所以(3)正确;(4)GF,EF1,点F不是EG的中点,CFGE, 所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【点睛】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.6、A【解析】试题分析:A=25424=
15、70,方程没有实数根,故本选项正确;B=36414=0,方程有两个相等的实数根,故本选项错误;C=1645(1)=360,方程有两个相等的实数根,故本选项错误;D=16413=40,方程有两个相等的实数根,故本选项错误;故选A考点:根的判别式7、B【分析】根据垂径定理可知AE的长在RtAOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长【详解】连接OA,由垂径定理可知,点E是弦AB的中点, 设半径为r,由勾股定理得, 即 解得:r=13所以CD=2r=26,即圆的直径为26,故选B【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.8、C【分析】根据众数
16、的概念求解【详解】这组数据中1出现的次数最多,出现了2次,则众数为1故选:C【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数9、B【解析】如图分别过D作DEY轴于E,过C作CFY轴于F,则ODEOBF,OD:DB=1:2相似比= 1:3面积比= OD:DB=1:9即又解得K=故选B10、D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的
17、左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D【点睛】本题考查了简单组合体的三视图解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力11、A【分析】将方程化简,再根据判断方程的根的情况.【详解】解:原方程可化为,所以原方程有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的情况,灵活利用的正负进行判断是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个不相等的实数根;当时,方程没有实数根.12、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,
18、则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点【详解】解:线段AB=60,AD=13,DE=17,EF=7,BD=60-13=47,AE=BE=30,AF=37,BD:AB=47:600.783,AF:AB=37:60=0.617,点F最接近线段AB的黄金分割点故选:C【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中,并且线段AB的黄金分割点有两个二、填空题(每题4分,共24分)13、
19、【分析】根据反比例函数的性质求出m的取值范围即可【详解】反比例函数在每个象限内随的增大而增大解得故答案为:【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键14、【分析】根据黄金矩形指的就是矩形的宽与长的比适合黄金分割比例,所以求出黄金分割比例即可,设线段长为1,较长的部分为x,则较短的部分为1-x,根据较长部分对于全部之比,等于较短部分对于较长部分之比,求出x,即可得到比值【详解】解:设线段长为1,较长的部分为x,则较短的部分为1-xx1=,x2=(舍)黄金分割比例为:黄金矩形中宽与长的比值:故答案为:【点睛】本题主要考查了黄金分割比例,读懂题意并且列出比例式正确求解是解决
20、本题的关键15、【解析】设圆心为O,半径长为r米,根据垂径定理可得AD=BD=6,则OD=(r-4),然后利用勾股定理在RtAOD中求解即可.【详解】解:设圆心为O,半径长为r米,可知AD=BD=6米,OD=(r-4)米在RtAOD中,根据勾股定理得:,解得r=6.5米,即半径长为6.5米.故答案为6.5【点睛】本题考查了垂径定理的应用,要熟练掌握勾股定理的性质,能够运用到实际生活当中.16、1【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式可得到关于r的方程,然后解方程即可【详解】设圆锥的底面圆的半径为r,
21、根据题意得解得r=1,即这个圆锥的底面圆的半径为1故答案为:1【点睛】本题考查了圆锥的计算,熟练掌握弧长公式,根据扇形的弧长等于圆锥底面的周长建立方程是解题的关键.17、【分析】先求出第一个正方形ABCD的边长,再利用OADBA1A求出第一个正方形的边长,再求第三个正方形边长,得出规律可求出第5个正方形的边长.【详解】点的坐标为,点的坐标为OA=3,OD=4,DAB=90DAO+BAA1=90,又DAO+ODA=90, ODA=BAA1OADBA1A即同理可求得得出规律,第n个正方形的边长为第5个正方形的边长为.【点睛】本题考查正方形的性质,相似三角形的判定和性质,勾股定理的运用,此题的关键是
22、根据计算的结果得出规律.18、x17,x23【分析】直接开平方法解一元二次方程即可.【详解】解:(x+5)24,x+52,x3或x7,故答案为:x17,x23【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.三、解答题(共78分)19、两次摸到的球都是红球的概率为.【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:共有9种等可能的结果,摸到的两个球都是红球的有1种情况,两次摸到的球都是红球的概率=【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解.20
23、、(1)证明见解析;(2)2;(3)【分析】(1)连接OH、OM,易证OH是ABC的中位线,利用中位线的性质可证明COHMOH,所以HCO=HMO=90,从而可知MH是O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tanABC=,所以BC=4,从而可知O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是O的切线可知AOCN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ【详解】解:(1)连接OH、OM,H是AC的中点,O是BC的中点OH是ABC的中位线OHAB,COH=ABC,MOH
24、=OMB又OB=OM,OMB=MBOCOH=MOH,在COH与MOH中,OC=OM,COH=MOH,OH=OHCOHMOH(SAS)HCO=HMO=90MH是O的切线;(2)MH、AC是O的切线HC=MH=AC=2HC=3tanABC=,=BC=4O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点IAC与AN都是O的切线AC=AN,AO平分CADAOCNAC=3,OC=2由勾股定理可求得:AO=ACOC=AOCI,CI=由垂径定理可求得:CN=设OE=x,由勾股定理可得:,x=,CE=,由勾股定理可求得:EN=,由垂径定理可知:NQ=2EN=21、(1)见解析,(2,3);(2)见解
25、析,1.1.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而结合三角形面积求法得出答案【详解】解:(1)如图所示:A1B1C1,即为所求;点B1的坐标为:(2,3);(2)如图所示:A2B2C2,即为所求;点C2的坐标为:(2,3);A2B2C2的面积为:41112121.1.【点睛】此题主要考查了平移变换以及位似变换,正确得出对应点位置是解题关键22、(1)点B距水平面AE的高度BH为5米.(2)宣传牌CD高约2.7米.【分析】(1)过B作DE的垂线,设垂足为G分别在RtABH中,通过解直角三角形求出BH、AH.(2)在ADE解直角三
26、角形求出DE的长,进而可求出EH即BG的长,在RtCBG中,CBG=45,则CG=BG,由此可求出CG的长然后根据CD=CG+GEDE即可求出宣传牌的高度.【详解】解:(1)过B作BGDE于G,在RtABF中,i=tanBAH=,BAH=30BH=AB=5(米).答:点B距水平面AE的高度BH为5米.(2)由(1)得:BH=5,AH=5,BG=AH+AE=5+15.在RtBGC中,CBG=45,CG=BG=5+15.在RtADE中,DAE=60,AE=15,DE=AE=15.CD=CG+GEDE=5+15+515=20102.7(米).答:宣传牌CD高约2.7米.23、(1),;(2);(3)
27、或或【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b,c的二元一次方程组求解即可(2) 过点作,过点作.证明CMD相似于AME,再根据对应线段成比例求解即可(3)根据题意设点P的纵坐标为y,首先根据三角形面积得出EF与y的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把和代入得:解方程组得出:所以,(2)由已知条件得出C点坐标为,设.过点作,过点作.两个直角三角形的三个角对应相等,解得:(3)设点P的纵坐标为y,由题意得出,MP与PE都为圆的半径,MP=PE整理得出,y=1,当y=1时有,解得,;当y=-1时有,
28、此时,x=0综上所述得出P的坐标为:或或【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.24、,2【分析】先根据分式混合运算的法则把原式进行化简,再选取使原式有意义的x的值代入进行计算即可【详解】解:原式当时(、,其它的数都可以)【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键25、(1);菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全员避灾安全培训课件
- 营运客车消防安全规定
- 艺术教育专业就业前景分析
- 经济学就业前景好吗
- 医患关系名词解释汇编
- 会计职业方向与前景
- 2025-2026学年江西省南昌某中学九年级(上)期中语文试卷(含答案)
- 2025-2026学年统编版九年级语文上册期中提优测试+答案
- 光伏面板安装培训课件教学
- 人力资源考试真题及答案
- 2025下半年贵州遵义市市直事业单位选调56人笔试考试备考题库及答案解析
- 《登泰山记》课件+2025-2026学年统编版高一语文必修上册
- 临床医学晕厥课件
- 中职汽车维修教学中数字化技术应用的实践课题报告教学研究课题报告
- 《储能技术》课件-2.4 抽水蓄能电站发电电动机
- 贵州大学《生物化学》2024 - 2025 学年第一学期期末试卷
- 2025年事业单位工勤人员高级工图书仓储员考试试题附答案
- M6螺钉抛光自动送料机构的设计
- 冬季电缆敷设施工专项方案
- 断绝母女关系的协议书
- 2025年考研马克思主义理论马克思主义基本原理试卷(含答案)
评论
0/150
提交评论