




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为( )ABCD2下列事件中是随机事件的个数是()投掷一枚硬币,正面朝上;五边形的内角和是540;20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;一个图形平
2、移后与原来的图形不全等A0B1C2D33方程x2+2x-5=0经过配方后,其结果正确的是ABCD4如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x= 1 .其中正确的有 A1个B2个C3个D4个5帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图下列结论正确的是( )A极差是6B众数是7C中位数是5D方差是86已知矩形ABCD,下列结论错误的
3、是()AABDCBACBDCACBDDA+C1807一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )ABCD8如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240.91,tan24=0.45)()
4、A21.7米B22.4米C27.4米D28.8米9如图,RtABC中,A=90,ADBC于点D,若BD:CD=3:2,则tanB=( )A23B32C610已知的三边长分别为、,且满足,则的形状是( )A等边三角形B等腰三角形C等腰直角三角形D直角三角形二、填空题(每小题3分,共24分)11如图,在中,为边上的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、若,则的长为_12如图在RtOAB中AOB20,将OAB绕点O逆时针旋转100得到OA1B1,则A1OB_13如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,
5、并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是_米14二次函数y=3(x+2)的顶点坐标_15如图,在RtABC中,ACB90,AC8,BC6,点E是AB边上一动点,过点E作DEAB交AC边于点D,将A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当BCF为等腰三角形时,AE的长为_16小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为_17如图,在四边形ABCD中,AB=BD,BDA
6、=45,BC=2,若BDCD于点D,则对角线AC的最大值为_18已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则MNO面积是_三、解答题(共66分)19(10分)先化简,再求值:,其中20(6分)如图,在RtABC中,ACB90(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的P中,P与边BC相交于点D,若AC6,PC3,求BD的长21(6分)如图,在平面直角坐标系xOy中,直线yx+
7、2与x轴交于点A,与y轴交于点C,抛物线yax2+bx+c的对称轴是x且经过A,C两点,与x轴的另一交点为点B(1)求抛物线解析式(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由22(8分)解方程(1)x24x+20(2)(x3)22x623(8分)一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同 (1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率; (2)甲、乙两人用这四个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从
8、盒中随机摸出一个小球,并记下标号数字若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平24(8分)如图1,抛物线yax2+bx+c的顶点(0,5),且过点(3,),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段ABd(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线yax2+bx+c上MN之间的部分,M在x轴上):(1)填空:线段AB的长度d ;弯折后A、B两点的距离x的取值范围是 ;若
9、S3,则是否存在点C,将AB分成两段(填“能”或“不能”) ;若面积S1.5时,点C将线段AB分成两段的长分别是 ;(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h ,该函数图象与O的位置关系是 (提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围25(10分)如图,AB是O的直径,射线BC交O于点D,E是劣弧AD上一点,且,过点E作EFBC于点F,延长FE和BA的延长线交与点G(1)证明:G
10、F是O的切线;(2)若AG6,GE6,求O的半径26(10分)在等腰直角三角形中,点在斜边上(),作,且,连接,如图(1)(1)求证:;(2)延长至点,使得,与交于点如图(2)求证:;求证: 参考答案一、选择题(每小题3分,共30分)1、A【分析】根据,求得m3或1,根据当x1时,y随x增大而增大,当x0时,y随x增大而减小,从而判断m-1符合题意,然后把x0代入解析式求得y的值【详解】解:,m3或1,二次函数的对称轴为xm,且二次函数图象开口向下,又当x1时,y随x增大而增大,当x0时,y随x增大而减小,1m0m-1符合题意,二次函数为,当x0时,y1故选:A【点睛】本题考查了二次函数的性质
11、,根据题意确定m-1是解题的关键2、C【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】掷一枚硬币正面朝上是随机事件;五边形的内角和是540是必然事件;20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有,共2个;故选:C【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、C【详解】解:根据配方法的意义,可知在方程的两边同
12、时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.4、B【解析】试题分析:当y1=y2时,即时,解得:x=0或x=2,由函数图象可以得出当x2时, y2y1;当0 x2时,y1y2;当x0时, y2y1错误当x0时, -直线的值都随x的增大而增大,当x0时,x值越大,M值越大正确抛物线的最大值为4,M大于4的x值不存在正确;当0 x2时,y1y2,当M=2时,2x=2,x=1;当x2时,y2y1,当M=2时,解得(舍去)使得M=2的x值是1或错误综上所述,正确的有2个故选
13、B5、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1A极差,结论错误,故A不符合题意;B众数为5,7,11,3,1,结论错误,故B不符合题意;C这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C不符合题意;D平均数是,方差结论正确,故D符合题意故选D【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键6、C【分析】由矩形的性质得出ABDC,ACBD,ABCD90,则A+C180,只有ABBC时,ACBD,即可得出
14、结果【详解】四边形ABCD是矩形,ABDC,ACBD,ABCD90,A+C180,只有ABBC时,ACBD,A、B、D不符合题意,只有C符合题意,故选:C 【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键7、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D考点:1由三视图判断几何体;2作图-三视图8、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,再根据tan24=,构建方程即可解决问题.【详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,
15、设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、D【分析】首先证明ABDACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值【详解】在RtABC中,ADBC于点D,ADB=CDAB+BAD=90,BAD+DAC=90,B
16、=DACABDCADDB:AD=AD:DCBD:CD=3:2,设BD=3x,CD=2xAD=tanB=故选D【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长10、D【分析】根据非负数性质求出a,b,c,再根据勾股定理逆定理解析分析.【详解】因为所以a-5=0,b-12=0,13-c=0所以a=5,b=12,c=13因为52+122=132所以a2+b2=c2所以以的三边长分别为、的三角形是直角三角形.故选:D【点睛】考核知识点:勾股定理逆定理.根据非负数性质求出a,b,c是关键.二、填空题(每小题3分,共2
17、4分)11、【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,则GF=10,则AF=16,AC=20,在RtACF中利用勾股定理可求出CF的值【详解】解:AGBD,BD=FG, 四边形BGFD是平行四边形, CFBD, CFAG, 又点D是AC中点, BD=DF=AC, 四边形BGFD是菱形, GF=BG=10,则AF=26-10=16, AC=210=20, 在RtACF中,CFA=90, 即 故答案是:1【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD
18、是菱形12、80【分析】由将OAB绕点O逆时针旋转100得到OA1B1,可求得A1OA的度数,继而求得答案【详解】将OAB绕点O逆时针旋转100得到OA1B1,A1OA100,AOB20,A1OBA1OAAOB80故答案为:80【点睛】此题考查了旋转的性质注意找到旋转角是解此题的关键13、54【解析】设建筑物的高为x米,根据题意易得CDGABG,CDDG2,BGABx,再由EFHABH可得,即,BH2x,即BDDFFH2x,亦即x25242x,解得x54,即建筑物的高是54米14、 (-2,0);【分析】由二次函数的顶点式,即可得到答案【详解】解:二次函数y=3(x+2)的顶点坐标是(,0);
19、故答案为:(,0);【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的顶点坐标15、2或或【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=12x;分三种情况讨论:当BF=BC时,列出方程,解方程即可;当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;当CF=BC时,作CGAB于G,则BG=FGBF,由射影定理求出BG,再解方程即可【详解】由翻折变换的性质得:AE=EFACB=90,AC=8,BC=6,AB1设AE=x,则EF=x,BF=12x分三种情况讨论:当BF=BC时,12x=6,解得:x=2,AE=2;当BF=CF时BF=CF,B=FC
20、BA+B=90,FCA+FCB=90,A=FCA,AF= FCBF=FC,AF=BF,x+x=12x,解得:x,AE;当CF=BC时,作CGAB于G,如图所示:则BG=FGBF根据射影定理得:BC2=BGAB,BG,即(12x),解得:x,AE;综上所述:当BCF为等腰三角形时,AE的长为:2或或故答案为:2或或【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论16、0.9【分析】根据频率=频数数据总数计算即可得答案【详解】共射击300次,其中有270次击中靶子,射中靶子的频率为=0.9,小明射击一次击中靶子的概率约为0.9,故答案为:0.
21、9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比17、【分析】以BC为直角边,B为直角顶点作等腰直角三角形CBE (点E在BC下方),先证明,从而,求的最大值即可,以为直径作圆,当经过中点时,有最大值.【详解】以BC为直角边,B为直角顶点作等腰直角三角形CBE (点E在BC下方),即CB=BE,连接DE,在和中,() ,若求AC的最大值,则求出的最大值即可,是定值,BDCD,即,点D在以为直径的圆上运动,如上图所示,当点D在上方,经过中点时,有最大值,在Rt中,对角线AC的最大值为:故答案为:【点睛】本题主要考查了等腰直角三角形的
22、性质、全等三角形的性质、圆的知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.18、3【分析】根据反比例函数系数k的几何意义得到:MNO的面积为|k|,即可得出答案【详解】反比例函数的解析式为,k=6,点M在反比例函数图象上,MNy轴于N,SMNO=|k|=3,故答案为:3【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|本知识点是中考的重要考点,同学们应高度关注三、解答题(共66分)19、 【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用特殊锐角的三角函数值、负整数指数幂与零指数幂得到
23、a的值,继而将a的值代入计算可得【详解】原式=(a+1)=(a+1)=,当a=2cos30+()-1-(-3)0=2+2-1=+1时,原式=【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值、负整数指数幂与零指数幂20、(1)如图所示,见解析;(1)BD的长为1【分析】(1)根据题意可知要作A的平分线,按尺规作图的要求作角平分线即可;(1)由切线长定理得出ACAE,设BDx,BEy,则BC6+x,BP3+x,通过PEBACB可得出,从而建立一个关于x,y的方程,解方程即可得到BD的长度.【详解】(1)如图所示:作A的平分线交BC于点P,点P即
24、为所求作的点(1)作PEAB于点E,则PEPC3,AB与圆相切,ACB90,AC与圆相切,ACAE,设BDx,BEy,则BC6+x,BP3+x,BB,PEBACB,PEBACB 解得x1,答:BD的长为1【点睛】本题主要考查尺规作图及相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.21、(1)抛物线的解析式为;(2)抛物线存在点M,点M的坐标或或或【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x0时,y2,即C(0,2),当
25、y0时,x+20,解得x4,即A(4,0).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为yx2x+2;(2)当点M在x轴上方时,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似,如图,设M(m,x2x+2),N(m,0).ANm+4,MNm2m+2,由勾股定理,得AC,BC,AC2+BC2AB2,ACB90,当ANMACB时,CABMAN,此时点M与点C重合,M(0,2).当ANMBCA时,MANABC,此时M与C关于抛物线的对称轴对称,M(3,2).当点M在x轴下方时,当ANMACB时,CABMAN,此时直线AM
26、的解析式为yx2,由,解得或,M(2,3),当ANMBCA时,MANABC,此时AMBC,直线AM的解析式为y2x8,由,解得或,M(5,18)综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似,点M的坐标(3,2)或(0,2)或(2,3)或(5,18)【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键22、(1)x2;(2)x3或x1【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得【详解】(1)x24x2,x24x+42+4,即(x2)22,解得x2,则x2;(2)(x3)22(x3)0,(x3)(x1)0,则x30或x1
27、0,解得x3或x1【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)也考查了配方法解一元二次方程23、 (1);(2) 这个游戏对甲、乙两人公平,理由见解析.【解析】(1)根据四个球中奇数的个数,除以总个数得到所求概率即可;(2)列表得出所有等可能的情况数,找出两次摸出标号数字同为奇数或偶数的情况数,以及一奇一偶的情况数,分别求出两人获胜的概率,比较即可【详解】(1)标号分别为
28、1,2,3,4的四个球中奇数为1,3,共2个, P(摸到标号数字为奇数)= = (2)列表如下: 12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况数有16中,其中同为偶数或奇数的情况有:(1,1),(3,1),(2,2),(4,2),(1,3)(3,3),(2,4),(4,4),共8种情况;一奇一偶的情况有:(2,1),(4,1),(1,2),(3,2),(2,3),(4,3),(1,4),(3,4),共8种,P(甲获胜)=P(乙获胜)= = ,则这个
29、游戏对甲、乙两人公平.【点睛】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比24、抛物线的解析式为:yx2+5;(2)20 x2,不能,+和;(2),相离或相切或相交;(3)相应S的取值范围为Sc2【分析】将顶点(0,5)及点(3,)代入抛物线的顶点式即可求出其解析式;(2)由抛物线的解析式先求出点M的坐标,由二次函数的图象及性质即可判断d的值,可由d的值判断出x的取值范围,分别将S3和25代入抛物线解析式,即可求出点C将线段AB分成两段的长;(2)设ACy,CBx,可直接写出点C分A
30、B所得两段AC与CB的函数解析式,并画出图象,证OPM为等腰直角三角形,过点O作OHPM于点H,则OHPM,分情况可讨论出AC与CB的函数图象(线段PM)与O的位置关系;(3)设直角三角形的两直角边长分别为a,b,由勾股定理及完全平公式可以证明S是x的二次函数,并可写出x的取值范围及相应S的取值范围【详解】解:抛物线yax2+bx+c的顶点(0,5),yax2+5,将点(3,)代入,得a(3)2+5,a ,抛物线的解析式为:y ;(2)S与x的函数关系如图所示(抛物线yax2+bx+c上MN之间的部分,M在x轴上),在y,当y0时,x22,x22,M(2,0),即当x2时,S0,d的值为2;弯折后A、B两点的距离x的取值范围是0 x2;当S3 时,设ACa,则BC2a,a(2a)3,整理,得a22a+60,b24ac40,方程无实数根;当S2.5时,设ACa,则BC2a,a(2a)2.5,整理,得a22a+30,解得,当a时,2a,当a时,2a,若面积S2.5时,点C将线段AB分成两段的长分别是和;故答案为:2,0 x2,不能,和;(2)设ACy,CBx,则yx+2,如图2所示的线段PM,则P(0,2),M(2,0),OPM为等腰直角三角形,PMOP2,过点O作OHPM于点H,则OHPM,当0 x时,AC与CB的函数图象(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论