




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,AB是O的弦,BAC30,BC2,则O的直径等于( )A2B3C4D62一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是( )A3B4CD83sin4
2、5的值是()ABCD4图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是( )ABCD5如图,O是ABC的外接圆,已知ABO=50,则ACB的大小为()A30B40C45D506已知二次函数y2x24x+1,当3x2时,则函数值y的最小值为()A15B5C1D37在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的( )ABC2倍D3倍8如图,抛物线与轴交于点,对称轴为,则下列结论中正确的是( )AB当时,随的增大而增大CD是一元二次方程的一个根9已知函数的图象经过点P(-1,4),则该图象必经过点( )A(1,4)B(-
3、1,-4)C(-4,1)D(4,-1)10如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD二、填空题(每小题3分,共24分)11不等式组的解集是_12我市某公司前年缴税40万元,今年缴税48.4万元该公司缴税的年平均增长率为 13一组数据:1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是_14袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_15已知二次根
4、式有意义,则满足条件的的最大值是_16将一元二次方程 用配方法化成的 形式为_17如图,AB是O的直径,弦CDAB于点G,点F是CD上一点,且满足,连接AF并延长交O于点E,连接AD、DE,若CF=2,AF=1给出下列结论:ADFAED;FG=2;tanE=;SDEF=4其中正确的是 (写出所有正确结论的序号)18已知,则_.三、解答题(共66分)19(10分)如图,已知ABC的顶点A、B、C的坐标分别是A(1,1)、B(4,3)、C(4,1)(1)画出ABC关于原点O中心对称的图形A1B1C1;(2)将ABC绕点A按顺时针方向旋转90后得到AB2C2,画出AB2C2并求线段AB扫过的面积20
5、(6分)如图,已知AB为O的直径,点E在O上,EAB的平分线交O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P(1)判断直线PC与O的位置关系,并说明理由;(2)若tanP=,AD=6,求线段AE的长21(6分)如图,在ABC中,ABAC,O是ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,DAE105(1)求CAD的度数;(2)若O的半径为4,求弧BC的长22(8分)如图,一次函数y1x+2的图象与反比例函数y2(k0)的图象交于A、B两点,且点A的坐标为(1,m)(1)求反比例函数的表达式及点B的坐标;(2)根据图象直接写出当y1y2时x的取值范围23(8分)
6、如图,在ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DEAC,垂足为E(1)DE与O有什么位置关系,请写出你的结论并证明;(2)若O的半径长为3,AF=4,求CE的长24(8分)先化简,再求值:,其中x2,y2.25(10分)内接于,是直径,点在上.(1)如图,若弦交直径于点,连接,线段是点到的垂线.问的度数和点的位置有关吗?请说明理由.若的面积是的面积的倍,求的正弦值.(2)若的半径长为,求的长度.26(10分)如图,AD是O的弦,AC是O直径,O的切线BD交AC的延长线于点B,切点为D,DAC30(1)求证:ADB是等腰三
7、角形;(2)若BC,求AD的长参考答案一、选择题(每小题3分,共30分)1、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到DBAC30,BCD90,根据直角三角形的性质解答【详解】如图,作直径BD,连接CD,BDC和BAC是所对的圆周角,BAC30,BDCBAC30,BD是直径,BCD是BD所对的圆周角,BCD90,BD2BC4,故选:C【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键2、D【分析】根据垂径定理,OCAB,故OC平分AB,由A
8、B=12,得出BC=6,再结合已知条件和勾股定理,求出OC即可【详解】解:OCAB,AB=12BC=6OC=故选D【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键3、B【解析】将特殊角的三角函数值代入求解【详解】解:sin45=故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值4、C【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形【详解】A、B、D都是轴对称图形,而C不是轴对称图形故选C【点睛】本题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分
9、折叠后可重合5、B【解析】试题解析: 在中, 故选B.6、A【分析】先将题目中的函数解析式化为顶点式,然后在根据二次函数的性质和x的取值范围,即可解答本题【详解】二次函数y2x24x+12(x+1)2+3,该函数的对称轴是直线x1,开口向下,当3x2时,x2时,该函数取得最小值,此时y15,故选:A【点睛】本题考查二次函数的最值,解题的关键是将二次函数的一般式利用配方法化成顶点式,求最值时要注意自变量的取值范围.7、A【分析】作OEAB于E,OFCD于F,根据题意得到AOBCOD,根据相似三角形的对应高的比等于相似比计算即可【详解】作OEAB于E,OFCD于F,由题意得,ABCD,AOBCOD
10、,= =,像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.8、D【解析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2bxc0的根,从而得解【详解】A、根据图象,二次函数开口方向向下,a0,故本选项错误;B、当x1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,c0,故本选项错误;D、抛物线与x轴的一个交点坐标是(1,0),对称轴是
11、x1,设另一交点为(x,0),1x21,x3,另一交点坐标是(3,0),x3是一元二次方程ax2bxc0的一个根,故本选项正确故选:D【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键9、A【解析】把P点坐标代入二次函数解析式可求得a的值,则可求得二次函数解析式,再把选项中所给点的坐标代入判断即可;【详解】二次函数的图象经过点P(-1,4),解得a=4,二次函数解析式为;当x=1或x=-1时,y=4;当x=4或x=-4时,y=64;故点(1,4)在抛物线上;故选A.【点睛】本题主要考查了二次函数图
12、象上点的坐标特征,掌握二次函数图象上点的坐标特征是解题的关键.10、D【详解】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D二、填空题(每小题3分,共24分)11、【分析】根据解一元一次不等式组的方法求解即可;【详解】解: 由不等式得,由不等式得,x4,故不等式组的解集是:;故答案为:.【点睛】本题主要考查了一元一次不等式组,掌握一元一次不等式是解题的关键.12、10%【解析】设该公司缴税的年平均增长率是x,则去年缴税40(1x) 万元, 今年缴税40(1x) (1x) 40(1x)2万元据此列出方程:40(1x)2=48.4,解
13、得x=0.1或x=2.1(舍去)该公司缴税的年平均增长率为10%13、1【解析】先根据数据的众数确定出x的值,即可得出结论【详解】一组数据:1,1,2,x,5,它有唯一的众数是1,x=1,此组数据为1,2,1,1,5,这组数据的中位数为1故答案为1【点睛】本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键14、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个【详解】设袋子中红球有x个,根据题意,得:,解得:x2,所以袋中红球有2个,故答案为2【点睛】此题考查概率公式的应用,解题关键在于求出摸到红球的频率15、【分析】先根据
14、二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【详解】二次根式有意义;3-4x 0,解得x,x的最大值为;故答案为.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键16、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【详解】解:由方程 ,变形得:,配方得:,即 ;故答案为.【点睛】此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键17、【解析】AB是O的直径,弦CDAB,DG=CG,ADF=AED,FAD=DAE(公共角),ADFAED,故正确;=,CF=2,FD=6,CD=DF+CF
15、=8,CG=DG=4,FG=CGCF=2,故正确;AF=1,FG=2,AG=,在RtAGD中,tanADG=,tanE=,故错误;DF=DG+FG=6,AD=,SADF=DFAG=6,ADFAED,=,SAED=,SDEF=SAEDSADF=;故正确故答案为18、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:,设a=2k,b=5k,【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可(2)分别作出B,C的对应点B2,C2即可,再利用扇形的面积公式计算即可【
16、详解】解(1)如图,A1B1C1即为所求(2)如图,AB2C2即为所求线段AB扫过的面积【点睛】本题考查作图旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、(1)PC是O的切线;(2) 【解析】试题分析:(1)结论:PC是O的切线只要证明OCAD,推出OCP=D=90,即可(2)由OCAD,推出,即,解得r=,由BEPD,AE=ABsinABE=ABsinP,由此计算即可试题解析:解:(1)结论:PC是O的切线理由如下:连接OCAC平分EAB,EAC=CAB又CAB=ACO,EAC=OCA,OCADADPD,OCP=D=90,PC是O的切线(2)连接BE在RtA
17、DP中,ADP=90,AD=6,tanP=,PD=8,AP=10,设半径为rOCAD,即,解得r=AB是直径,AEB=D=90,BEPD,AE=ABsinABE=ABsinP=点睛:本题考查了直线与圆的位置关系解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型21、(1)CAD35;(2)【分析】(1)由AB=AC,得到=,求得ABC=ACB,推出CAD=ACD,得到ACB=2ACD,于是得到结论;(2)根据平角的定义得到BAC=40,连接OB,OC,根据圆周角定理得到BOC=80,根据弧长公式即可得到结论【详解】(1)AB=AC,=,ABC=ACB,D为的中点,=,C
18、AD=ACD,=2,ACB=2ACD,又DAE=105,BCD=105,ACD=105=35,CAD=35;(2)DAE=105,CAD=35,BAC=180-DAE-CAD=40,连接OB,OC,BOC=80,弧BC的长=【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧22、(1)y,B(3,1);(2)3x0或x1【分析】(1)把A点坐标代入一次函数解析式可求得m的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值,解析式联立,解方程即可求得B的坐标;(2)根据图象观察直线在双曲线上方对应的x的
19、范围即可求得【详解】解:(1)一次函数图象过A点,m1+2,解得m3,A点坐标为(1,3),又反比例函数图象过A点,k133反比例函数y,解方程组得:或,B(3,1);(2)当y1y2时x的取值范围是3x0或x1【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数法的应用.23、(1)DE与O相切,证明见解析;(2)CE长度为1【分析】(1)连接OD,如图,根据等腰三角形的性质和等量代换可得ODB=C,进而可得ODAC,于是可得ODDE,进一步即可得出结论;(2)连接OF,由切线的性质和已知条件易得四边形ODEF为矩形,从而可得EF=OD=3,在RtAOF中根据勾股定理可求出
20、AO的长,进而可得AB的长,即为AC的长,再利用线段的和差即可求出结果【详解】解:(1)DE与O相切;理由如下:连接OD,如图,OB=OD,B=ODB,AB=AC,B=C,ODB=C,ODAC,DEAC,ODDE,DE与O相切;(2)如图,连接OF;DE,AF是O的切线,OFAC,ODDE,又DEAC,四边形ODEF为矩形,EF=OD=3,在RtOFA中,AO2=OF2+AF2,AC=AB=AO+BO=8,CE=ACAFEF=843=1答:CE长度为1【点睛】本题考查了圆的切线的判定和性质、矩形的判定和性质、等腰三角形的性质以及勾股定理等知识,属于常考题型,正确添加辅助线、熟练掌握上述知识是解题的关键24、 , 【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得解:原式= =当,时,原式= =点睛:本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键25、(1)没有关系,CDF=CAB=60;(2);(3)或【解析】(1)根据同弧所对的圆周角解答即可;利用锐角三角函数的定义求出AC与BC、DF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训课件含哪些
- 安全培训课件合集图片
- 农民参与农村合作社合同
- 梅州酒店培训课件下载
- 培训计划课件模板
- 质量控制计划与检查表模板
- 医院废物处理培训课件
- 云计算平台租赁合同
- 明天你好800字作文(13篇)
- 门诊护理工作
- 中国航空集团有限公司介绍
- “匠心杯”班组长管理创新技能竞赛(决赛)考试题库500题(含答案)
- 幼儿居家饮食安全
- 沙滩承包合同范例
- GB/T 44841-2024非合金及低合金铸铁焊接工艺评定试验
- 教师资格认定申请表
- DB11T 1620-2019 建筑消防设施维修保养规程
- 监控机房管理制度
- 舞蹈学导论课件
- XX镇村级光伏扶贫电站运维管理考核方案
- 植物病虫害防治技能大赛理论题及答案
评论
0/150
提交评论