




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,O是ABC的外接圆,C60,则AOB的度数是( )A30
2、B60C120D1502如图,将一个RtABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了( )A8tan20BC8sin20D8cos203化简的结果是A-9B-3C9D34已知点P(x,y)在第二象限,|x|6,|y|8,则点P关于原点的对称点的坐标为( )A(6,8)B(6,8)C(6,8)D(6,8)5按照一定规律排列的个数:-2,4,-8,16,-32,64,若最后三个数的和为768,则为( )A9B10C11D126如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个
3、动点连接,当最大时,点的坐标是( )ABCD7下列数学符号中,既是轴对称图形,又是中心对称图形的是( )ABCD8已知点都在反比例函数的图象上,则下列关系式一定正确的是( )ABCD9如图,ABC中,ABAC10,tanA2,BEAC于点E,D是线段BE上的一个动点,则的最小值是( )ABCD1010将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于( )A-3B1C4D711在RtABC中,C90,AC5,BC12,则cosB的值为()ABCD12将下列多项式分解因式,结果中不含因式x1的是( )Ax21Bx2+2x+1Cx22x+1Dx(x2)(x2)二、填空题(每题4分
4、,共24分)13如图,在O内有折线DABC,点B,C在O上,DA过圆心O,其中OA8,AB12,AB60,则BC_14关于的一元二次方程有一个解是,另一个根为 _15在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_16在ABC中,AB=AC=5,BC=8,若BPC=BAC,tanBPC=_.17如图,平面直角坐标系中,等腰的顶点分别在轴、轴的正半轴, 轴, 点在函数的图象上.若则的值为_18如果,那么=_三、解答题(共78分)19(8分)用适当的方法解方程:(1)(2)20(8分
5、)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由21(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B(1)求此抛物线的解析式;(2)已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D的坐标;(3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存
6、在,请求出P点的坐标;若不存在,请说明理由.22(10分)如图,在ABC中,AB=AC,tanACB=2,D在ABC内部,且AD=CD,ADC=90,连接BD,若BCD的面积为10,则AD的长为多少?23(10分)某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每降价1元,每星期可多卖出20件. 已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?24(10分)如图,将ABC绕点C顺时针旋转得到DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE()求证:AEBC;()若已知旋转角为50,ACE130,求CED和BDE的度数2
7、5(12分)某蔬菜加工公司先后两批次收购蒜薹(ti)共100吨第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨这两批蒜薹共用去16万元(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?26只有1和它本身两个因数且大于1的正整数叫做素数我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1(1)若从7, 11, 19
8、, 23中随机抽取1个素数,则抽到的素数是7的概率是_;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角定理即可得到结论【详解】C60,AOB2C120,故选:C【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键2、A【解析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20【详解】设木桩上升了h米,由已知图形可得:tan20=,木桩上升的高度h=8tan20故选B.3、B【分析
9、】根据二次根式的性质即可化简.【详解】=-3故选B.【点睛】此题主要考查二次根式的化简,解题的关键实数的性质.4、D【分析】根据P在第二象限可以确定x,y的符号,再根据|x|=6,|y|=8就可以得到x,y的值,得出P点的坐标,进而求出点P关于原点的对称点的坐标【详解】|x|=6,|y|=8,x=6,y=8,点P在第二象限,x0,y0,x=6,y=8,即点P的坐标是(6,8),关于原点的对称点的坐标是(6,8),故选:D【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)
10、关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数5、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:32n-2=768,解得:n=10;当n为奇数:整理得出:-32n-2=768,则求不出整数故选B6、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大
11、.求出点M的坐标即可.【详解】解:根据三角形三边的关系得:AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点由可知,,对称轴设直线为故直线解析式为当时,.故选:【点睛】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,7、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.8、C【分析】根据反比例函数
12、的性质即可得到答案.【详解】k=30,反比例函数的图形在第一象限或第三象限,在每个象限内,y随着x的增大而减小,点,且36,故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键.9、B【解析】如图,作DHAB于H,CMAB于M由tanA=2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题【详解】如图,作DHAB于H,CMAB于MBEAC,AEB=90,tanA=2,设AE=a,BE=2a,则有:100=a2+4a2,a2=20,a=2或-2(舍弃),BE=2a=4,AB=AC,BEAC,CM
13、AB,CM=BE=4(等腰三角形两腰上的高相等)DBH=ABE,BHD=BEA,DH=BD,CD+BD=CD+DH,CD+DHCM,CD+BD4,CD+BD的最小值为4故选B【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型10、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可【详解】x2-4x+3=0,x2-4x=-3x2-4x+4=-3+4,(x-2)2=1,即n=1故选B【点睛】本题考查了解一元二次方程的应用,解题的关键是能
14、正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时)11、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可【详解】由勾股定理得,则,故选:B【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做A的余弦是解题的关键12、B【分析】原式各项分解后,即可做出判断【详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;B、原式=(x+1)2,不含因式x-1,符合题意;C、原式=(x-1)2,含因式x-1,不合题意;D、原式=(x-2)(x-1),含因式x-1,不合题意,故选:B【点睛】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是
15、解题的关键二、填空题(每题4分,共24分)13、1【分析】作OEBC于E,连接OB,根据A、B的度数易证得ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在RtODE中,根据OD的长及ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案【详解】作OEBC于E,连接OBAB60,ADB60,ADB为等边三角形,BDADAB12,OA8,OD4,又ADB60,DEOD2, BE12210,由垂径定理得BC=2BE=1故答案为:1【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键14、【分析】一元二次方程的根就是一元二次
16、方程的解,就是能够使方程左右两边相等的未知数的值即把0代入方程求解可得m的值;把m的值代入一元二次方程中,求出x的值,即可得出答案【详解】解:把x=0代入方程(m+2)x2+3x+m2-4=0得到m2-4=0,解得:m=2,m-20,m=-2,当m=-2时,原方程为:-4x2+3x=0解得:x1=0,x2=,则方程的另一根为x=【点睛】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能求出m的值是解此题的关键15、1【分析】根据题意得出摸出红球的频率,继而根据频数总数频率计算即可【详解】小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,口袋中红色球的个数可能是304
17、0%1个故答案为:1【点睛】本题比较容易,考查利用频率估计概率大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比16、【详解】试题分析:如图,过点A作AHBC于点H,AB=AC,AH平分BAC,且BH=BC=4.又BPC=BAC,BAH=BPC.tanBPC=tanBAH.在RtABH中,AB=5,BH=4,AH=1tanBAH=.tanBPC=.考点:1.等腰三角形的性质;2.锐角三角函数定义;1.转化思想的应用.17、4【分析】根据等腰三角形的性质和勾股定理求出AC的值,根据等面积法求出OA的值,OA和AC分别是点C的横纵坐标,又点C在反比例函数图像上,即可得出答
18、案.【详解】ABC为等腰直角三角形,AB=2BC=2,解得:OA=点C的坐标为又点C在反比例函数图像上故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C的横坐标.18、【解析】试题解析: 设a=2t,b=3t, 故答案为:三、解答题(共78分)19、(1);(2)=,=1【分析】(1)用公式法求解;(2)用因式分解法求解【详解】解:(1)a=2,b=3,c=-5,=32-12(-5)=190,所以x1=1,x1=;(2)(x+3)+(1-2x) (x+3)-(1-2x)=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1【点睛】本题考查了
19、一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键20、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小抛物线解
20、析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,)【点睛】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键21、(1)(2)(0
21、,-1)(3)(1,0)(9,0)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D的坐标;(3)分两种情形过点C作CPBD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象
22、限,D(2,3),直线BC解析式为yx3,BCDBCO45,CDCD2,OD321,点D关于直线BC对称的点D(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线
23、BC的特殊性求点的坐标,学会分类讨论,不能漏解22、5【分析】作辅助线构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH,得出DG和AG的长度,即可得出答案.【详解】解:过D作DHBC于H,过A作AMBC于M,过D作DGAM于G,设CM=a,AB=AC,BC=2CM=2a,tanACB=2,=2,AM=2a,由勾股定理得:AC=a, SBDC=BCDH=10,=10,DH=, DHM=HMG=MGD=90,四边形DHMG为矩形,HDG=90=HDC+CDG,DG=HM,DH=MG,ADC=90=ADG+CDG
24、,ADG=CDH,在ADG和CDH中,ADGCDH(AAS),DG=DH=MG=,AG=CH=a+,AM=AG+MG,即2a=a+,a2=20,在RtADC中,AD2+CD2=AC2,AD=CD,2AD2=5a2=100,AD=或(舍),故答案为:【点睛】本题考查的是三角形的综合,运用到了三角函数和全等的相关知识,需要熟练掌握相关基础知识.23、定价为57.5元时,所获利润最大,最大利润为6125元.【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可.【详解】设所获利润为元,每件降价元则降价后的每件利润为元,每
25、星期销量为件由利润公式得:整理得:由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小故当时,y取得最大值,最大值为6125元即定价为:元时,所获利润最大,最大利润为6125元.【点睛】本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键.24、()证明见解析;()BDE=50, CED =35【分析】()由旋转的性质可得ACCD,CBCE,ACDBCE,由等腰三角形的性质可求解()由旋转的性质可得ACCD,ABCDEC,ACDBCE50,EDCA,由三角形内角和定理和等腰三角形的性质可求解【详解】证明:()将ABC绕点C顺时针旋转得到DEC,ACCD,CBCE,ACDBCE,A,CBE,AEBC;()将ABC绕点C顺时针旋转得到DEC,AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可行性研究报告投标范本
- 安全教研课件
- 中国硫化锑行业市场规模及未来投资方向研究报告
- 少儿逻辑思维培训商业计划书
- (高清版)DB1331∕T 003-2022 雄安新区建构筑物通信建设规范
- 文创创业计划书怎么写
- 中国耐高温尼龙项目商业计划书
- 外科骨牵引护理课件
- 外科腹部伤口护理课件
- 外科疾病说课课件
- 急诊科运用PDCA循环降低急诊危重患者院内转运风险品管圈QCC专案结题
- 医院废水管理培训
- 物流行业安全运输规范手册
- 2024年游泳初级指导员认证理论考试题库(浓缩500题)
- 建设工程场地平整合同
- 医学教材 《狂犬病暴露预防处置工作规范(2023年版)》解读课件
- 搬运装卸服务外包投标方案(技术标)
- 《答司马谏议书》+课件+2023-2024学年统编版高中语文必修下册
- 水库除险加固工程设计(毕业设计)
- 置换合同模板
- 江苏省南京市秦淮区2023-2024学年七年级下学期期末考试语文试题
评论
0/150
提交评论