2023学年河南省洛阳市外国语学校数学九上期末联考试题含解析_第1页
2023学年河南省洛阳市外国语学校数学九上期末联考试题含解析_第2页
2023学年河南省洛阳市外国语学校数学九上期末联考试题含解析_第3页
2023学年河南省洛阳市外国语学校数学九上期末联考试题含解析_第4页
2023学年河南省洛阳市外国语学校数学九上期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如图,四边形ABCD是O的内接四边形,点E在边CD的延长线上,若ABC110,则ADE的度数为()A55B70C90D1102在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()ABCD3二次函数图象如图,下列结论正确的

2、是( )AB若且,则CD当时,4已知一个三角形的两个内角分别是40,60,另一个三角形的两个内角分别是40,80,则这两个三角形()A一定不相似B不一定相似C一定相似D不能确定5如图,BD是菱形ABCD的对角线,CEAB交于点E,交BD于点F,且点E是AB中点,则tanBFE的值是()AB2CD6如图,AB为O的直径,PD切O于点C,交AB的延长线于D,且CO=CD,则PCA=( )A30B45C60D67.57点A(3,2)关于x轴的对称点A的坐标为( )A(3,2)B(3,2)C(3,2)D(3,2)8如图所示的两个四边形相似,则的度数是()A60B75C87D1209已知二次函数yax1

3、+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D510如图,中,弦相交于点,连接,若,则( )ABCD11已知点,在二次函数的图象上,则,的大小关系是( )ABCD12如图,立体图形的俯视图是( )ABCD二、填空题(每题4分,共24分)13甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是、,且,则队员身高比较整齐的球队是_14如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则_若点恰好为的中点

4、时,的长为_15如图,O的半径OC=10cm,直线lOC,垂足为H,交O于A,B两点,AB=16cm,直线l平移_cm时能与O相切16在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为 .17一支反比例函数,若,则y的取值范围是_18如图,在RtABC中,ACB90,CD是AB边上的高,CE是AB边上的中线,若AD3,CE5,则CD等于_三、解答题(共78分)19(8分)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为x=1,且抛物线经过A(1,0)、C(0,3)两点,与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称

5、轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使PCB=90的点P的坐标20(8分)如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.(1)求一次函数的解析式;(2)求点坐标和反比例函数的解析式.21(8分)某水果商场经销一种高档水果,原价每千克50元(1)连续两次降价后每千克32元,若每次下降的百分率相同求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销

6、售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?22(10分)李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?23(10分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元.试销后发现每袋的销售价(元)与日销售量(袋)之间的关系如下表:(元)152030(袋)252010若日销售量是销售价的一次函数,试求:(1)日销售量(袋)与销售价(

7、元)的函数关系式.(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?24(10分)如图,在四边形中,对角线,交于点,平分,过点作交的延长线于点,连接(1)求证:四边形是菱形;(2)若,求的长25(12分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC1米,CD6米,求电视塔的高ED26如图,正方形ABCD的过长是3,BPCQ,连接AQ,DP交于点O,并分别与边CD、BC交于点F、E,连接AE(1)求证:AQDP;(2)求证:AO2ODOP;(3)当BP1时,求QO的长度参考答案一、选择题(每题4

8、分,共48分)1、D【解析】四边形ABCD是O的内接四边形,ABC+ADC=180,又ADC+ADE=180,ADE=ABC=110.故选D.点睛:本题是一道考查圆内接四边形性质的题,解题的关键是知道圆内接四边形的性质:“圆内接四边形对角互补”.2、A【分析】根据题意可知,此题是不放回实验,一共有1211=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率【详解】解:由题意可得,P(A)=,故选A.【点睛】本题考查列表法和树状图法,解答本题的关键是明确题意,求出相应的概率3、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a0,c0,abc

9、0,故A选项错误;若且,对称轴为,故B选项错误;二次函数的图象的对称轴为直线x=1,与x轴的一个交点的横坐标小于3,与x轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c0,故C选项错误;二次函数的图象的对称轴为直线x=1,开口向下,函数的最大值为y=a+b+c,故D选项正确,故选:D.【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.4、C【解析】试题解析:一个三角形的两个内角分别是 第三个内角为 又另一个三角形的两个内角分别是 这两个三角形有两个内角相等,这两个三角形相似.故选C.点睛:两组角对应

10、相等,两三角形相似.5、D【分析】首先利用菱形的性质得出AB=BC,即可得出ABC=60,再利用三角函数得出答案【详解】解:四边形ABCD是菱形,AB=BC,CEAB,点E是AB中点,ABC=60,EBF=30,BFE=60,tanBFE=故选:D【点睛】此题考查菱形的性质,关键是根据含30的直角三角形的性质和三角函数解答6、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出【详解】解:PD切O于点C,OCCD,在RtOCD中,又CD=OC,COD=45OC=OA,OCA45=22.5PCA=90-22.5=67.5故选:D【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等

11、腰三角形的性质是解题的关键7、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案【详解】解:点A(3,2)关于x轴的对称点A的坐标为:(3,2),故选:D【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数8、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:的度数是:360-60-75-138=87故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.9、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由

12、图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.10、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可【详解】解:,又,故选:【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键11、D【分析】由抛物线开口向上且对称轴为直线x3知离对称轴水平距离越远,函数值越大,据此求解可得【详解】二次函数中a10,抛物线开口向上,有最小值x3,离对称轴水平距离越远,函数值越大,由二次函数图象的对称性可知43331,故选:D【点睛】本题主要考查

13、二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质12、C【解析】找到从上面看所得到的图形即可【详解】A、是该几何体的主视图;B、不是该几何体的三视图;C、是该几何体的俯视图;D、是该几何体的左视图故选C【点睛】考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中二、填空题(每题4分,共24分)13、乙【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】解:,队员身高比较整齐的球队是乙,故答案为:乙【点睛】本题考查方差解题关键在于知道方差是用来衡量一组数据波动

14、大小的量14、 【分析】(1)先根据直径所对的圆周角是直角可求出ACB=90,再根据三角形的内角和定理可求出BAC+ABC=90,然后根据角平分线的性质可求出DAB+DBA=45,最后利用外角的性质即可求出MAD的度数;(2)如图连接AM,先证明AMEBCE,得到 再列代入数值求解即可【详解】解:(1)为直径,ACB=90.BAC+ABC=90点是弧的中点,ABM=CBM=ABC.平分交于点,BAD=CAD=BAC.DAB+DBA=ABC+BAC=45.45.(2)如图连接AMAB是直径,AMB=90ADM=45,MA=MD,DM=DB,BM=2AM,设AM=x,则BM=2x,AB=4,x2+

15、4x2=160,x=4 (负根已经舍弃),AM=4,BM=8,MAE=CBM,CBM=ABM.MAE=ABM.AME=AMB=90,AMEBMA. ME=2.故答案为:(1). (2). .【点睛】本题考查圆周角定理,圆心角,弧弦之间的关系,相似三角形的判定和性质,作出辅助线是解题的关键.15、4或1【分析】要使直线l与O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线lOC,由垂径定理得AH=BH,在RtAOH中,求OH即可【详解】连结OA直线lOC,垂足为H,OC为半径,由垂径定理得AH=BH=AB=8OA=OC=10,在RtAOH中,由勾股定理得OH=,C

16、H=OC-OH=10-6=4,DH=2OC-CH=20-4=1,直线l向左平移4cm时能与O相切或向右平移1cm与O相切故答案为:4或1【点睛】本题考查平移直线与与O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决16、9.6【解析】试题分析:设树的高度为x米,根据在同一时刻物高与影长成比例,即可列出比例式求解.设树的高度为x米,由题意得解得则树的高度为9.6米考点:本题考查的是比例式的应用点评:解答本题的关键是读懂题意,准确理解在同一时刻物高与影长成比例,正确列出比例式.17、y-1【分析】根据函数解析式可知当x

17、0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围【详解】解:反比例函数,-40,当x0时,y随x的增大而增大,当x=1时,y=-1,当,则y的取值范围是y-1,故答案为:y-1【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性18、【分析】根据直角三角形的性质得出AECE1,进而得出DE2,利用勾股定理解答即可【详解】解:在RtABC中,ACB90,CE为AB边上的中线,CE1,AECE1,AD3,DE2,CD为AB边上的高,在RtCDE中,CD,故答案为:.【点睛】此题考查勾股定理的应用以及直角三角形的性质,关键是

18、根据直角三角形的性质得出AECE1三、解答题(共78分)19、(1)yx22x1(2)M(1,2)(1 P(1,4)【解析】分析:(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式; (2)由于A、B关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标; (1)若PCB=90,根据BCO为等腰直角三角形,可推出CDP为等腰直角三角形,根据线段长度求P点坐标详解:(1)抛物线的对称轴为x=1,且A(1,0),B(1,0); 可设抛物线的解析式为y=a(x+1)(x1),由于抛

19、物线经过C(0,1),则有:a(0+1)(01)=1,a=1,y=(x+1)(x1)=x22x1; (2)由于A、B关于抛物线的对称轴直线x=1对称,那么M点为直线BC与x=1的交点; 由于直线BC经过C(0,1),可设其解析式为y=kx1,则有:1k1=0,k=1; 直线BC的解析式为y=x1; 当x=1时,y=x1=2,即M(1,2); (1)设经过C点且与直线BC垂直的直线为直线l,作PDy轴,垂足为D; OB=OC=1,CD=DP=1,OD=OC+CD=4,P(1,4) 点睛:本题考查了二次函数解析式的确定、轴对称的性质以及特殊三角形的性质等知识,难度适中20、(1)(1);【分析】(

20、1)作AHy轴于H根据AOC的面积为1,求出OC,得到点C的坐标,代入y=1x+b即可结论;(1)把A、B的坐标代入y=1x+1得:n、m的值,进而得到点B的坐标,即可得到反比例函数的解析式【详解】(1)作AHy轴于HA(-1,n),AH=1AOC的面积为1,OCAH=1,OC=1,C(0,1),把C(0,1)代入y=1x+b中得:b=1,一次函数的解析式为y=1x+1(1)把A、B的坐标代入y=1x+1得:n=-1,m=1,B(1,4)把B(1,4)代入中,k=4,反比例函数的解析式为【点睛】本题考查了一次函数与反比例函数的综合根据AOC的面积求出点C的坐标是解答本题的关键21、(1)20%

21、;(2)每千克应涨价5元【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0y8),根据总盈余每千克盈余数量,可列方程,可求解【详解】解:(1)设每次下降的百分率为x根据题意得:50(1x)232解得:x10.2,x21.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0y8)6000(10+y)(50020y)解得:y15,y210(不合题意舍去)答:每千克应涨价5元【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可22、购买这张矩形铁皮共花了700元钱【解析】设矩形铁皮的宽为x米,则长为米,根

22、据长方形的体积公式结合长方体运输箱的容积为15立方米,即可得出关于x的一元二次方程,解之取其正值即可得出x的值,再根据矩形的面积公式结合铁皮的单价即可求出购买这张矩形铁皮的总钱数【详解】设矩形铁皮的宽为x米,则长为米,根据题意得:,整理,得:(不合题意,舍去),20 x(x+2)=2057=700.答:购买这张矩形铁皮共花了700元钱【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键23、 (1) ;(2) 要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋

23、)与销售价x(元)的函数关系式即可(2)利用每件利润总销量总利润,进而求出二次函数最值即可【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为ykxb得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:yx40(2)设利润为元,得当时,取得最大值,最大值为225故要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润一件的利润销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题24、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:,平分,又又,四边形是平行四边形又是菱形(2)解:四边形是菱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论