辽宁省朝阳市建平县2023学年数学九年级第一学期期末经典试题含解析_第1页
辽宁省朝阳市建平县2023学年数学九年级第一学期期末经典试题含解析_第2页
辽宁省朝阳市建平县2023学年数学九年级第一学期期末经典试题含解析_第3页
辽宁省朝阳市建平县2023学年数学九年级第一学期期末经典试题含解析_第4页
辽宁省朝阳市建平县2023学年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12

2、 个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B30C40D502在ABC中,C90若AB3,BC1,则cosB的值为()ABCD33下列方程中,是关于x的一元二次方程的是()A5x+52x1By27y0Cax2+bc+c0D2x2+2xx2-14若方程有两个不相等的实数根,则实数的值可能是( )A3B4C5D65如图,在平行四边形ABCD中,点E在DC边上,连接AE,交 BD于点F,若DE:EC2:1,则DEF的面积与BAF的面积之比为( ) A1 :4B4:9C9:

3、4D2:36已知一扇形的圆心角为,半径为,则以此扇形为侧面的圆锥的底面圆的周长为( )ABCD7如果5x=6y,那么下列结论正确的是()ABCD8与三角形三个顶点距离相等的点,是这个三角形的()A三条中线的交点B三条角平分线的交点C三条高的交点D三边的垂直平分线的交点9如图,抛物线的对称轴为直线,与轴的个交点坐标为,其部分图象如图所示,下列结论:;方程的两个根是,;当时,的取值范围是其中结论正确的个数是( )ABCD10如图,直线与双曲线交于、两点,则当时,x的取值范围是A或B或C或D二、填空题(每小题3分,共24分)11已知二次函数yx25x+m的图象与x轴有两个交点,若其中一个交点的坐标为

4、(1,0),则另一个交点的坐标为_12如图,在ABC中,AC4,BC6,CD平分ACB交AB于D,DEBC交AC于E,则DE的长为_13如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.;抛物线与轴的另一个交点时;方程有两个不相等的实数根;不等式的解集为.上述六个结论中,其中正确的结论是_.(填写序号即可)14抛物线的顶点坐标是_15方程的解为_.16已知,二次函数的图象如图所示,当y0时,x的取值范围是_17圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为_18点关于轴的对称点的坐标是_三、解答题(共66分)19(10分)小华为了测量楼房

5、的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房的高度(计算结果精确到)(参考数据:,)20(6分)在一个不透明的布袋里装有个标号分别为的小球,这些球除标号外无其它差别从布袋里随机取出一个小球,记下标号为,再从剩下的个小球中随机取出一个小球,记下标号为记点的坐标为(1)请用画树形图或列表的方法写出点所有可能的坐标;(2)求两次取出的小球标号之和大于的概率;(3)求点落在直线上的概率21(6分)夏季多雨,在山坡处出现了滑坡,为了测量山体滑坡的坡面的长度,探测队在距离坡底点米处的点用热气球进行数据监测,当热气球垂直上升到点时观察滑坡

6、的终端点时,俯角为,当热气球继续垂直上升90米到达点时,探测到滑坡的始端点,俯角为,若滑坡的山体坡角,求山体滑坡的坡面的长度(参考数据:,结果精确到0.1米)22(8分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使BPC的面积最大?若存在,请求出BPC的最大面积;若不存在,试说明理由23(8分)一个箱子里有4瓶牛奶,其中有一瓶是过期的,且这4瓶牛奶的外包装完全相同(1)现从这4瓶牛奶中随机拿1瓶,求恰好拿到过期牛奶的概率;(2)

7、现从这4瓶牛奶中不放回地随机拿2瓶,求拿到的2瓶牛奶中恰好有过期牛奶的概率24(8分)用一根长12的铁丝能否围成面积是7的矩形?请通过计算说明理由.25(10分)如图,把RtABC绕点A逆时针旋转40,得到在RtABC,点C恰好落在边AB上,连接BB,求BBC的度数26(10分)如图,是的角平分线,延长至点使得求证:参考答案一、选择题(每小题3分,共30分)1、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某

8、个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.2、A【分析】直接利用锐角三角函数关系的答案【详解】如图所示:AB3,BC1,cosB故选:A 【点睛】考核知识点:余弦.熟记余弦定义是关键.3、D【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意;B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意;C、只有当a0时,是关于x的一元二次方程,故本选项不符合题意;D、是关于x的一元二次方程,故本选项符

9、合题意;故选:D【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键4、A【分析】根据一元二次方程有两个实数根可得:0,列出不等式即可求出的取值范围,从而求出实数的可能值.【详解】解:由题可知:解出:各个选项中,只有A选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与的关系是解决此题的关键.5、B【分析】先判断DEFBAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:四边形ABCD是平行四边形,DCAB,DC=AB,DEFBAF,.又DE:EC2:1,.故选B.【点睛】本题考查平行四边形的

10、性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.6、A【分析】利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长.【详解】解:扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长为故选:A【点睛】本题考查了弧长的计算:.7、A【解析】试题解析:A, 可以得出: 故选A.8、D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得【详解】解:如图:OAOB,O在线段AB的垂直平分线上,OBOC,O在线段BC的垂直平分线上,OAOC,O在线段AC

11、的垂直平分线上,又三个交点相交于一点,与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点故选:D【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等9、B【分析】利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x轴的另个交点坐标为(3,0),则可对进行判断;由对称轴方程可对进行判断;根据抛物线在x轴上方所对应的自变量的范围可对进行判断【详解】观察函数的图象知:抛物线与轴有2个交点,0,所以错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,所以正确;抛物线的对称轴为,即,所以正确;抛物线与轴

12、的两点坐标为,且开口向下,当y0时,的取值范围是,所以正确;综上,正确,正确个数有3个故选:B【点睛】本题考查了二次函数图象与系数的关系,关键是掌握对于二次函数,二次项系数a决定抛物线的开口方向和大小;一次项系数b和二次项系数a共同决定对称轴的位置;常数项c决定抛物线与y轴交点位置;抛物线与x轴交点个数由决定10、C【解析】试题解析:根据图象可得当时,x的取值范围是:x6或0 x2.故选C.二、填空题(每小题3分,共24分)11、(4,0)【分析】先把(1,0)代入y=x2-5x+m求出m得到抛物线解析式为y=x2-5x+4,然后解方程x2-5x+4=0得到抛物线与x轴的另一个交点的坐标【详解

13、】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以抛物线解析式为y=x2-5x+4,当y=0时,x2-5x+4=0,解得x1=1,x2=4,所以抛物线与x轴的另一个交点的坐标为(4,0)故答案为(4,0)【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题12、2.1【分析】由条件可证出DEEC,证明AEDACB,利用对应边成比例的知识,可求出DE长【详解】CD平分ACB交AB于D,ACDDCB,又DEBC,EDCDCB,ACDEDC,DEEC,设DEx,则AE1x,DEBC

14、,AEDACB,即,x2.1故答案为:2.1【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据相似三角形找到对应线段成比例.13、【分析】由对称轴x=1判断;根据图象确定a、b、c的符号;根据对称轴以及B点坐标,通过对称性得出结果;根据的判别式的符号确定;比较x=1时得出y1的值与x=4时得出y2值的大小即可;由图象得出,抛物线总在直线的下面,即y2y1时x的取值范围即可【详解】解:因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故正确;抛物线开口向下,a0,对称轴在y轴右侧,b0,抛物线与y轴交于正半轴,c0,abc0,故不正确;抛物线对称轴为x=1,

15、抛物线与x轴的交点B的坐标为(4,0),根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故不正确;抛物线与x轴有两个交点,b2-4ac0,的判别式,=b2-4a(c+3)= b2-4ac-12a,又a0,-12a0,= b2-4ac-12a0,故正确;当x=-1时,y1=a-b+c0;当x=4时,y2=4m+n=0,a-b+c4m+n,故不正确;由图象得:的解集为x1或x4;故不正确;则其中正确的有:故答案为:【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:通常2a+b的值都是利用抛物线的对称轴来确定;抛物线与x轴的交点个数确定其的值,即b2-4ac的值

16、:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点;知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点14、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案【详解】解:抛物线顶点式得顶点为,抛物线的顶点坐标是(-1,-3)故答案为(-1,-3)【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键15、,【分析】因式分解法即可求解.【详解】解:x(2x-5)=0,,【点睛】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.16、【分析】

17、直接利用函数图象与x轴的交点再结合函数图象得出答案【详解】解:如图所示,图象与x轴交于(-1,0),(1,0),故当y0时,x的取值范围是:-1x1故答案为:-1x1【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键17、60或120【解析】试题解析:如图,作OHAB于H,连接OA、OB,C和C为AB所对的圆周角,OHAB,AH=BH=AB=,在RtOAH中,cosOAH=,OAH=30,AOB=180-60=120,C=AOB=60,C=180-C=120,即弦AB所对的圆周角为60或120点睛:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心

18、角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径18、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.三、解答题(共66分)19、【分析】作DHAB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可【详解】作DHAB于H,DBC=15,BD=20,由题意得,四边形ECBF和四边形CDHB是矩形,EF=BC=19.2,BH=CD=5,AEF=45,AF=EF=19.2,AB=AF+FH+HB=19.2+1.6+5=25.826m,答:楼房AB的高度约为

19、26m【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键20、(1)见解析;(2)(3)【分析】(1)根据题意直接画出树状图即可(2)根据(1)所画树状图分析即可得解(3)若使点落在直线上,则有x+y=5,结合树状图计算即可.【详解】解:(1)画树状图得:共有种等可能的结果数;(2)共有种等可能的结果数,其中两次取出的小球标号之和大于的有种,两次取出的小球标号之和大于的概率是;(3)点落在直线上的情况共有4种,点落在直线上的概率是【点睛】本题考查的知识点是求简单事件的概率问题,根据题目画出树状图,数形结合,可以使题目简单明

20、了,更容易得到答案.21、的长为177.2米【分析】过点作,垂足为,作,垂足为,设,先根据的正切值得出,再根据的正切值得出,进而计算出,最后根据列出方程求解即得【详解】如下图,过点作,垂足为,作,垂足为设在中,四边形为矩形,在中,在中,四边形为矩形解得答:的长为177.2米【点睛】本题是解直角三角形题型,考查了特殊角三角函数,解题关键是将文字语言转化为几何语言,并找出等量关系列方程22、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,PBC的面积最大,最大面积是1【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方

21、程即可求出A和B的坐标;(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(,),过点P作PDy轴,交直线BC于点D,则点D的坐标为(,),利用面积公式得出关于x的二次函数,从而求得其最值【详解】(1)抛物线的对称轴是直线,解得, 抛物线的解析式为:,当时,即, 解之得:, ,点A的坐标为(-2,0),点B的坐标为(8,0),故答案为:,点A的坐标为(-2,0),点B的坐标为(8,0);(2)当时,点C的坐标为(0,4)设直线BC的解析式为,将点B(8,0)和点C(0,4)的坐标代入得:,解之得:,直线BC的解析式为,假设存在,设点P 的坐标为(,),过点P作PD轴,交直线BC于点D,交轴于点E,则点D的坐标为(,),如图所示,PD=-()=SPBC=SPDC+ SPDB= =-10当=4时,PBC的面积最大,最大面积是1【点睛】本题属于二次函数综合题,综合考查了待定系数法求解析式,一次函数的应用,三角形的面积,解题的关键是学会构建二次函数解决最值问题23、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论