2021-2022学年广东省深圳南头高三第三次模拟考试数学试卷含解析_第1页
2021-2022学年广东省深圳南头高三第三次模拟考试数学试卷含解析_第2页
2021-2022学年广东省深圳南头高三第三次模拟考试数学试卷含解析_第3页
2021-2022学年广东省深圳南头高三第三次模拟考试数学试卷含解析_第4页
2021-2022学年广东省深圳南头高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D42宁波古圣王阳明的传习录专门讲过易经八

2、卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD3若ab0,0c1,则AlogaclogbcBlogcalogcbCacbc Dcacb4已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD5已知全集,集合,则( )ABCD6若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或7已知直线,则“”是“”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8已知椭圆的左、右焦点分别为,上顶

3、点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD9已知数列满足:,则( )A16B25C28D3310的展开式中含的项的系数为( )AB60C70D8011在等差数列中,若(),则数列的最大值是( )ABC1D312设复数满足为虚数单位),则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_14双曲线的焦点坐标是_,渐近线方程是_.15已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值

4、范围为_16如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_,点到直线的距离的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.18(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.19(12分)已知椭圆的左,右焦点分别为

5、,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,四边形ABCD内接于椭圆E,记直线AD,BC的斜率分别为,求证:为定值.20(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏(1)若当时,求此时的值;(2)设,且(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值21(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每

6、一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式22(10分)已知函数,其中.()若,求函数的单调区间;()设.若在上恒成立,求实数的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的

7、离心率.故选:A【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平2B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.3B【解析】试题分析:对于选项A,而,所以,但不

8、能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.4B【解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设 ,则有且只有一个实数根.当 时,当 时, ,由即,解得,结合图象可知,此时

9、当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.5B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题6C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦

10、点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.7C【解析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q

11、的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系8B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B9C【解析】依次递推求出得解.【详解】n=1时,n=2时,n=3时,n=4时,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.10B【解析】展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别

12、与前面的常数项和项相乘得到,所以的展开式中含的项的系数为故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.11D【解析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.12B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,所以.故选:B.【

13、点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.

14、14 【解析】通过双曲线的标准方程,求解,即可得到所求的结果【详解】由双曲线,可得,则,所以双曲线的焦点坐标是,渐近线方程为:故答案为:;【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题15【解析】根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线 与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线 与圆相离时, 恒为锐角,故,解得 从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.16 【解析】三棱锥的底面边长和侧棱长都为4,所以

15、在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直线确定平面,直线确定平面,则,同理,为所求,所以到直线最大距离为.故答案为:;.【点睛】本题考查空间中的距离、正四面体的结构特

16、征,考查空间想象能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),表示以为圆心为半径的圆;为抛物线;(2)【解析】(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【详解】(1)消去参数的直角坐标方程为:.的极坐标方程.,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【点睛】本题考查了极坐标,参数方程综合,考

17、查了学生综合分析,转化划归,数学运算的能力,属于中档题.18(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.19(1)(2)证明见解析【解析】(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值,求出,即

18、可得答案;(2)根据题意可知,因为,所以可设直线CD的方程为,将直线代入曲线的方程,利用韦达定理得到的关系,再代入斜率公式可证得为定值.【详解】(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下顶点时,的面积取得最大值.所以,所以,故椭圆E的标准方程为.(2)根据题意可知,因为,所以可设直线CD的方程为.由,消去y可得,所以,即.直线AD的斜率,直线BC的斜率,所以,故为定值.【点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.20 (1);(2)(i),;(ii).【解析】(1)在中,

19、由正弦定理可得所求;(2)(i)由余弦定理得,两式相加可得所求解析式(ii)在中,由余弦定理可得,根据的最大值不小于可得关于的不等式,解不等式可得所求【详解】(1)在中,由正弦定理得,所以,即(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即又,解得,所以所求关系式为,(ii)当观赏角度的最大时,取得最小值在中,由余弦定理可得,因为的最大值不小于,所以,解得,经验证知,所以即两处喷泉间距离的最小值为【点睛】本题考查解三角形在实际中的应用,解题时要注意把条件转化为三角形的边或角,然后借助正余弦定理进行求解解题时要注意三角形边角关系的运用,同时还要注意所得结果要符合实际意义21(1),(2)【解析】(1)根据机器人的进行规律可确定、的值;(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.【详解】解:(1),(2)设为沿轴正方向走的步数(每一步长度为1),则反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论