材料力学 第八章 弯曲变形_第1页
材料力学 第八章 弯曲变形_第2页
材料力学 第八章 弯曲变形_第3页
材料力学 第八章 弯曲变形_第4页
材料力学 第八章 弯曲变形_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、材料力学 第八章 弯曲变形第1页,共78页,2022年,5月20日,21点56分,星期四同济大学航空航天与力学学院顾志荣第八章 弯曲变形 材料力学第2页,共78页,2022年,5月20日,21点56分,星期四 回 顾: 弯曲内力在外力作用下,梁的内力沿轴线 的变化规律。 弯曲应力在外力作用下,梁内应力沿横截面高度的分布规律。 本 章: 弯曲变形在外力作用下,梁在空间位置的变化规律。第八章 弯曲变形 第3页,共78页,2022年,5月20日,21点56分,星期四研究弯曲变形的目的(1)刚度计算;(2)解简单的超静定梁。本章的基本内容:一、弯曲变形的量度及符号规定;二、挠曲线及其近似微分方程三、计

2、算弯曲变形的两种方法 (1)积分法(2)叠加法四、刚度条件 提高梁弯曲刚度的措施五、用变形比较法解简单的超静定梁。第八章 弯曲变形 第4页,共78页,2022年,5月20日,21点56分,星期四一、弯曲变形的量度及符号规定第八章 弯曲变形 第5页,共78页,2022年,5月20日,21点56分,星期四 梁的挠度和转角 ypxcw1、度量弯曲变形的两个量:(1)挠度:梁轴线上的点在垂直于梁轴线方向的所发生的线位移称为挠度。(工程上的一般忽略水平线位移)(2)转角:梁变形后的横截面相对于原来横截面绕中性轴所转过的角位移称为转角。第八章 弯曲变形 /一、弯曲变形的量度及符号规定第6页,共78页,20

3、22年,5月20日,21点56分,星期四 梁的挠度和转角 ypxcw(2)挠度的符号规定:向上为正,向下为负。2、符号规定:(1)坐标系的建立: 坐标原点一般设在梁的左端,并规定:以变形前的梁轴线为x轴,向右为正;以y轴代表曲线的纵坐标(挠度),向上为正。(3)转角的符号规定:逆时针转向的转角为正; 顺时针转向的转角为负。W(-)(-)第八章 弯曲变形 /一、弯曲变形的量度及符号规定第7页,共78页,2022年,5月20日,21点56分,星期四第八章 弯曲变形 二、挠曲线及其近似微分方程第8页,共78页,2022年,5月20日,21点56分,星期四1、挠曲线: 在平面弯曲的情况下,梁变形后的轴

4、线在弯曲平面内成为一条曲线,这条曲线称为挠曲线。轴线纵向对称面FqM弯曲后梁的轴线(挠曲线)第八章 弯曲变形 /二、挠曲线及其近似微分方程第9页,共78页,2022年,5月20日,21点56分,星期四MABMCD0MBCconst答案 D2、挠曲线的特征:光滑连续曲线(1)第10页,共78页,2022年,5月20日,21点56分,星期四2、挠曲线的特征:光滑连续曲线(2)FA0FB0MCDconst答案 DABCD第11页,共78页,2022年,5月20日,21点56分,星期四2、挠曲线的特征:光滑连续曲线(3) pplpplpplpplFA0pplABCDMBDconstFBP答案C第12页

5、,共78页,2022年,5月20日,21点56分,星期四力学公式数学公式1MEI纯弯曲 横力弯曲( lh5)1(x)M(x)EI1(x)d2wdx21+(dwdx)23/23、挠曲线的近似微分方程(1)曲率与弯矩、抗弯刚度的关系第13页,共78页,2022年,5月20日,21点56分,星期四小挠度情形下此即弹性曲线的小挠度微分方程横力弯曲1(x)M(x)EImax(0.010.001)l ;(d dx)2 11(x)d2dx21+(ddx)23/2MEId2dx2(x)第14页,共78页,2022年,5月20日,21点56分,星期四2owxMM选取如图坐标系,则弯矩M与 恒为同号(2)挠曲线近

6、似微分方程符号及近似解释MEId2dx2(x)近似解释:(1)忽略了剪力的影响;(2)由于小变形,略去 了曲线方程中的高次项。第15页,共78页,2022年,5月20日,21点56分,星期四22(3)选用不同坐标系下的挠曲线近似微分方程d2dx2M(x)EIM(x)EId2dx2第16页,共78页,2022年,5月20日,21点56分,星期四第八章 弯曲变形 三、计算弯曲变形的两种方法第17页,共78页,2022年,5月20日,21点56分,星期四1、积分法基本方法 利用积分法求梁变形的一般步骤:(1)建立坐标系(一般:坐标原点设在梁的左端),求支座反力,分段列弯矩方程; 分段的原则:凡载荷有

7、突变处(包括中间支座),应作为分段点;凡截面有变化处,或材料有变化处,应作为分段点;中间铰视为两个梁段间的联系,此种联系体现为两部分之间 的相互作用力,故应作为分段点;第八章 弯曲变形 /三、计算弯曲变形的两种方法第八章 弯曲变形 /三、计算弯曲变形的两种方法第18页,共78页,2022年,5月20日,21点56分,星期四(2)分段列出梁的挠曲线近似微分方程,并对其积分 两次对挠曲线近似微分方程积分一次,得转角方程:再积分一次,得挠曲线方程:第八章 弯曲变形 /三、计算弯曲变形的两种方法第19页,共78页,2022年,5月20日,21点56分,星期四(3)利用边界条件、连续条件确定积分常数 积

8、分常数的数目取决于的分段数 M (x) n 段 积分常数2n个举例:分2段,则积分常数2x2=4个第八章 弯曲变形 /三、计算弯曲变形的两种方法第20页,共78页,2022年,5月20日,21点56分,星期四积分常数的确定边界条件和连续条件: 边界条件:梁在其支承处的挠度或转角是已知的,这样的已知条件称为边界条件。 连续条件:梁的挠曲线是一条连续、光滑、平坦的曲线。因此,在梁的同一截面上不可能有两个不同的挠度值或转角值,这样的已知条件称为连续条件。 边界条件积分常数2n个=2n个 连续条件第八章 弯曲变形 /三、计算弯曲变形的两种方法第21页,共78页,2022年,5月20日,21点56分,星

9、期四边界条件: 连续条件:例题:列出图示结构的边界条件和连续条件。第八章 弯曲变形 /三、计算弯曲变形的两种方法第22页,共78页,2022年,5月20日,21点56分,星期四例题:列出图示结构的边界条件和连续条件。解:边界条件: 连续条件: 第八章 弯曲变形 /三、计算弯曲变形的两种方法第23页,共78页,2022年,5月20日,21点56分,星期四积分常数的物理意义和几何意义物理意义:将x=0代入转角方程和挠曲线方程,得 即坐标原点处梁的转角,它的EI倍就是积分常数C; 即坐标原点处梁的挠度的EI倍就是积分常数D。几何意义:C转角 D挠度(4)建立转角方程和挠曲线方程;(5)计算指定截面的

10、转角和挠度值,特别注意 和 及其所在截面。第八章 弯曲变形 /三、计算弯曲变形的两种方法第24页,共78页,2022年,5月20日,21点56分,星期四AqBL例题 悬臂梁受力如图所示。求 和 。Xyx取参考坐标系Axy。解:1、列出梁的弯矩方程2、积分一次:积分二次:(1)(2)第八章 弯曲变形 /三、计算弯曲变形的两种方法第25页,共78页,2022年,5月20日,21点56分,星期四3、确定常数C、D.由边界条件:代入(1)得:代入(2)得:代入(1)(2)得:第八章 弯曲变形 /三、计算弯曲变形的两种方法第26页,共78页,2022年,5月20日,21点56分,星期四代入得:将(与C比

11、较知: )(与D比较知: )常数C表示起始截面的转角刚度(EI)因此常数D表示起始截面的挠度刚度(EI)第八章 弯曲变形 /三、计算弯曲变形的两种方法第27页,共78页,2022年,5月20日,21点56分,星期四例题 一简支梁受力如图所示。试求 和 。ALFCabyx解:1、求支座反力x2、分段列出梁的弯矩方程BC段xAC段B第八章 弯曲变形 /三、计算弯曲变形的两种方法第28页,共78页,2022年,5月20日,21点56分,星期四BC段AC段3、确定常数由边界条件:(1)(2)由光滑连续条件:(3)(4)可解得:第八章 弯曲变形 /三、计算弯曲变形的两种方法第29页,共78页,2022年

12、,5月20日,21点56分,星期四则简支梁的转角方程和挠度方程为BC段AC段4、求转角代入得:代入得:第八章 弯曲变形 /三、计算弯曲变形的两种方法第30页,共78页,2022年,5月20日,21点56分,星期四5、求 。求得 的位置值x。则由解得:第八章 弯曲变形 /三、计算弯曲变形的两种方法第31页,共78页,2022年,5月20日,21点56分,星期四代入 得:若 则:在简支梁情况下,不管F作用在何处(支承除外), 可用中间挠度代替,其误差不大,不超过3%。第八章 弯曲变形 /三、计算弯曲变形的两种方法第32页,共78页,2022年,5月20日,21点56分,星期四积分法求梁变形举例:用

13、积分法求图示梁的 、 、 、 :第八章 弯曲变形 /三、计算弯曲变形的两种方法第33页,共78页,2022年,5月20日,21点56分,星期四分段建立弯矩方程:AB段: (0 x1 )BC段: ()第八章 弯曲变形 /三、计算弯曲变形的两种方法第34页,共78页,2022年,5月20日,21点56分,星期四二、分段建立近似微分方程,并对其积分两次: AB段:即: (1) (2)第八章 弯曲变形 /三、计算弯曲变形的两种方法第35页,共78页,2022年,5月20日,21点56分,星期四BC段: (3)(4)第八章 弯曲变形 /三、计算弯曲变形的两种方法第36页,共78页,2022年,5月20日

14、,21点56分,星期四三、利用边界条件、连续条件确定积分常数由边界条件确定C1、D1:当当时, ,由(1)式得 C1=0 ;时, ,由(2)式得 D1=0 。由连续条件确定C2、D2:第八章 弯曲变形 /三、计算弯曲变形的两种方法第37页,共78页,2022年,5月20日,21点56分,星期四当时,,即联立(1) 、(3)式子:,当时,即联立(2)、(4)式: 即得:D2=0第八章 弯曲变形 /三、计算弯曲变形的两种方法第38页,共78页,2022年,5月20日,21点56分,星期四四、分段建立转角方程、挠曲线方程:AB段: (5) (6)BC段:(7)(8)第八章 弯曲变形 /三、计算弯曲变

15、形的两种方法第39页,共78页,2022年,5月20日,21点56分,星期四五求梁指定截面上的转角和挠度当时,由(5)式得,由(6)式得, 当时,由(7)式得, 由(8)式得, 第八章 弯曲变形 /三、计算弯曲变形的两种方法第40页,共78页,2022年,5月20日,21点56分,星期四 叠加法前提 小变形 力与位移之间的线性关系挠度、转角与载荷(如P、q、M)均为一次线性关系轴向位移忽略不计。2、叠加法简捷方法 须记住梁在简单荷载作用下的变形挠曲线方程、转角、挠度计算公式。第八章 弯曲变形 /三、计算弯曲变形的两种方法第41页,共78页,2022年,5月20日,21点56分,星期四叠加法的两

16、种处理方法:(1)荷载叠加: 叠加原理:在小变形和线弹性范围内,由几个载荷共同作用下梁的任一截面的挠度和转角,应等于每个载荷单独作用下同一截面产生的挠度和转角的代数和。第八章 弯曲变形 /三、计算弯曲变形的两种方法第42页,共78页,2022年,5月20日,21点56分,星期四www已知:q、l 、 EI求:wC , B例题第43页,共78页,2022年,5月20日,21点56分,星期四www第44页,共78页,2022年,5月20日,21点56分,星期四第45页,共78页,2022年,5月20日,21点56分,星期四例题 怎样用叠加法确定C和 wC ?w第46页,共78页,2022年,5月2

17、0日,21点56分,星期四wwww第47页,共78页,2022年,5月20日,21点56分,星期四ww第48页,共78页,2022年,5月20日,21点56分,星期四w第49页,共78页,2022年,5月20日,21点56分,星期四(2)逐段刚化法:第50页,共78页,2022年,5月20日,21点56分,星期四例题:试用叠加法求图示阶梯形变截面悬臂梁自由端C 的挠度由于梁的抗弯刚度EI 在B 处不连续,若由挠曲线微分方程积分求解,须分段进行,工作量较大。可用叠加法求解。假定AB段刚化,研究自由端C 对截面B的相对挠度;2. 解除AB段的刚化,并令BC段刚化。ABC2EIEIl/2l/2ppc

18、Bwc1)(243)2(331-=-=EIPlEIlPwcwBPMB=Pl/2ABCwc2wB悬臂梁BC第51页,共78页,2022年,5月20日,21点56分,星期四由梁的变形连续条件,直线BC因AB段的弯曲变形而移位到 的位置,使C点有相应的挠度将图(b)和(c)两种情况的变形叠加后,即可求得自由端 C 的挠度这种分析方法叫做梁的逐段刚化法。APMB=Pl/2BCwc2wBpcBwc1第52页,共78页,2022年,5月20日,21点56分,星期四p 例题:用叠加法求AB梁上E处的挠度 第53页,共78页,2022年,5月20日,21点56分,星期四wE = wE 1+ wE 2 = wE

19、 1+ wB/ 2wE 1pwE 2pwB=?第54页,共78页,2022年,5月20日,21点56分,星期四wB= wB1PPpl+wB2+ wB3WB2=CCWB3=CC第55页,共78页,2022年,5月20日,21点56分,星期四第八章 弯曲变形 四、刚度条件 提高梁弯曲刚度的措施第56页,共78页,2022年,5月20日,21点56分,星期四刚度条件:w许用挠度,许用转角工程中, w常用梁的计算跨度l 的若干分之一表示,例如:对于桥式起重机梁:对于一般用途的轴:在安装齿轮或滑动轴承处,许用转角为:第八章 弯曲变形 /四、刚度条件 提高梁弯曲刚度的措施第57页,共78页,2022年,5

20、月20日,21点56分,星期四梁的变形除了与载荷与梁的约束有关外,还取决于以下因素:材料梁的变形与弹性模量E成反比;截面梁的变形与截面的惯性矩 成反比;跨长梁的变形与跨长l的n次幂成正比第八章 弯曲变形 /四、刚度条件 提高梁弯曲刚度的措施第58页,共78页,2022年,5月20日,21点56分,星期四(1)减小跨度,增加支座,或加固支座。例如受q作用的简支梁:方法:增加支座:LABqLABq第八章 弯曲变形 /四、刚度条件 提高梁弯曲刚度的措施第59页,共78页,2022年,5月20日,21点56分,星期四加固支座:LABqLABq(2)选用合理截面, 。常采用工字形、箱形截面,以提高惯性矩

21、。与强度不同的是要提高全梁或大部分梁的惯性矩,才能使梁的变形有明显改善。第60页,共78页,2022年,5月20日,21点56分,星期四(3)合理安排载荷作用点,以降低 。方法:使载荷尽量靠近支座,载荷大多数由支座承担。例如:AlFCa(4)其它:因钢的E基本相同,所以材料的杨氏模量对 变形影响不大。第61页,共78页,2022年,5月20日,21点56分,星期四第八章 弯曲变形 五、用变形比较法解简单超静定梁第62页,共78页,2022年,5月20日,21点56分,星期四1、超静定的概念2、用变形比较法解简单超静定梁的基本思想:(1)解除多余约束,变超静定梁为静定梁;(2)用静定梁与超静定梁

22、在解除约束处的变形比较,建立协调方程;(3)通过协调方程(即补充方程),求出多余的约束反力。3、简单超静定梁求解举列。第八章 弯曲变形 /五、用变形比较法解简单超静定梁第63页,共78页,2022年,5月20日,21点56分,星期四超静梁未知力的数目多于能列出的独立平衡方程的数目,仅利用平衡方程不能解出全部未知力,则称为超静定问题(或静不定问题)。超静次数=未知力的数目- 独立平衡方程数BqL4个约束反力,3个平衡方程,静不定次数=11、超静定的概念第八章 弯曲变形 /五、用变形比较法解简单超静定梁第64页,共78页,2022年,5月20日,21点56分,星期四2 、用变形比较法解简单超静定梁

23、的基本思想:(1) 确定超静定次数。(2) 选择基本静定梁。 静定梁(基本静定基) 将超静定梁的多余约束解除,得到相应 的静定系统,该系统仅用静力平衡方程就可解出所有反力以 及内力。 多余约束 杆系在维持平衡的必要约束外所存在的多余约束 或多余杆件。多余约束的数目=超静定次数BqL多余约束的数目=1第八章 弯曲变形 /五、用变形比较法解简单超静定梁第65页,共78页,2022年,5月20日,21点56分,星期四静定梁(基本静定基)选取(2)解除A端阻止转动的支座反力矩 作为多余约束,即选择两端简支的梁作为基本静定梁。BqLA(1)解除B支座的约束,以 代替,即选择A端固定B端自由的悬臂梁作为基

24、本静定梁。BqLA第八章 弯曲变形 /五、用变形比较法解简单超静定梁第66页,共78页,2022年,5月20日,21点56分,星期四(2) 基本静定基要便于计算,即要有利于建立变形协调条 件。一般来说,求解变形时,悬臂梁最为简单,其次 是简支梁,最后为外伸梁。 基本静定基选取可遵循的原则:(1) 基本静定基必须能维持静力平衡,且为几何不变系统;第八章 弯曲变形 /五、用变形比较法解简单超静定梁第67页,共78页,2022年,5月20日,21点56分,星期四ABqLBqLABqLA3、列出变形协调条件。比较原静不定梁和静定基在解除约束处的变形,根据基本静定梁的一切情况要与原超静定梁完全相同的要求

25、,得到变形协调条件。第八章 弯曲变形 /五、用变形比较法解简单超静定梁第68页,共78页,2022年,5月20日,21点56分,星期四本例: (1)4、用积分法或叠加法求变形,并求出多余未知力。仅有q作用,B点挠度为:仅有 作用,B点挠度为:因此解得:BqlA第八章 弯曲变形 /五、用变形比较法解简单超静定梁第69页,共78页,2022年,5月20日,21点56分,星期四5、根据静力平衡条件在基本静定梁上求出其余的约束反力。本例: (1)BqLA( )第八章 弯曲变形 /五、用变形比较法解简单超静定梁第70页,共78页,2022年,5月20日,21点56分,星期四BqLA(+)(-)BqL因此6、在基本静定梁上按照静定梁的方法求解内力、应力和变形。第八章 弯曲变形 /五、用变形比较法解简单超静定梁第71页,共78页,2022年,5月20日,21点56分,星期四例题 图示静不定梁,等截面梁AC的抗弯刚度EI,拉杆BD的抗拉 刚

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论