版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE PAGE 9课题:1.1.3 正弦定理和余弦定理高二数学 教学案主备人:执教者:【学习目标】 1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。 2.通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。【学习重点】在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。【学习难点】正、余弦定理与三角形的有关性质的综合运用【授课类型】新授课【教 具】课件、电子白板【学习方法】 【学习过程
2、】引入: 思考:在ABC中,已知,解三角形。 (由学生阅读课本第9页解答过程) 从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。二、特例示范: 例1在ABC中,已知,讨论三角形解的情况分析:先由可进一步求出B;则从而1当A为钝角或直角时,必须才能有且只有一解;否则无解。2当A为锐角时,如果,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且
3、时,有两解;其它情况时则只有一解或无解。例2在ABC中,已知,判断ABC的类型。分析:由余弦定理可知(注意:)解:,即,。例3在ABC中,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而 当堂练习:(1)在ABC中,已知,试判断此三角形的解的情况。(2)在ABC中,若,则符合题意的b的值有_个。(3)在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3)(1)在ABC中,已知,判断ABC的类型。 (2)已知ABC满足条件,判断ABC的类型。 (答案:(1);(2)ABC是等腰或直角三角形)(1)在ABC中,若,且此三角形
4、的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C(答案:(1)或;(2)本节小结:(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用六、作业布置:学案1.1.3个性设计高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D
5、(2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在
6、圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇
7、偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,写出月销售量Q(百件)与销售价格P(元)的函数关系。该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学(中医学)中医诊断学试题及答案
- 2025年高职市场营销(市场推广)试题及答案
- 2025年中职医疗器械维护与管理(设备保养)试题及答案
- 2025年本科环境科学(空气检验技术)试题及答案
- 2025年高职资源勘查(地质技术推广)试题及答案
- 2025年大学中国艺术史(书法艺术赏析)试题及答案
- 2025年中职体育训练(体育训练基础)试题及答案
- 2025年大学大一(文化产业管理)文化产业管理学基础阶段测试题及答案
- 2025年高职会展服务与管理(展会组织)试题及答案
- 2025年高职农业(应用技术)试题及答案
- DGTJ08-10-2022 城镇天然气管道工程技术标准
- 整形外科医生个人工作述职报告
- 水冷精密空调培训课件
- 大型机械设备安全操作培训教材
- 室外给排水管道施工技术交底范本
- 移动电源生产工艺流程
- 动静脉内瘘术后护理查房规范
- 核安全事故培训课件
- 码头泊位改造试运行方案
- 2025年中考英语真题分类汇编(全国)专题04 时态、语态、三大从句及常识和情景交际(原卷版)
- 【语文】北京市朝阳外语小学小学二年级上册期末试卷(含答案)
评论
0/150
提交评论