




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河北省石家庄市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.B.{-1}
C.{0}
D.{1}
2.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120
3.已知A(3,1),B(6,1),C(4,3)D为线段BC的中点,则向量AC与DA的夹角是()A.
B.
C.
D.
4.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0
B.对任意x∈R,都有x2<0
C.存在x0∈R,使得x02≥0
D.不存在x∈R,使得x2<0
5.若sin(π/2+α)=-3/5,且α∈[π/2,π]则sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25
6.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250
7.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1
B.
C.
D.-2
8.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<10
9.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}
10.cos215°-sin215°=()A.
B.
C.
D.-1/2
二、填空题(10题)11.若集合,则x=_____.
12.
13.
14.等差数列的前n项和_____.
15.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.
16.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.
17.lg5/2+2lg2-(1/2)-1=______.
18.等比数列中,a2=3,a6=6,则a4=_____.
19.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.
20.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.
三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
24.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
25.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
四、证明题(5题)26.若x∈(0,1),求证:log3X3<log3X<X3.
27.
28.己知sin(θ+α)=sin(θ+β),求证:
29.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
30.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
五、简答题(5题)31.化简
32.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
33.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
34.简化
35.由三个正数组成的等比数列,他们的倒数和是,求这三个数
六、综合题(5题)36.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
38.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
39.
40.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.C
2.B
3.C
4.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,
5.D同角三角函数的变换,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],则sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.
6.A分层抽样方法.样本抽取比70/3500=1/50例为该校总人数为1500+3500=5000,则=n/5000=1/50,∴n=100.
7.C由两条直线垂直可得:,所以答案为C。
8.D对数的定义,不等式的计算.由lgx<1得,所以0<x<10.
9.C
10.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
11.
,AB为A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
12.-1
13.-1
14.2n,
15.12,高三年级应抽人数为300*40/1000=12。
16.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2
17.-1.对数的四则运算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.
18.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
19.2/3两直线的位置关系.由题意得-2/a×(2a-1)=-1,解得a=2/3
20.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.
21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
23.
24.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
25.
26.
27.
28.
29.
∴PD//平面ACE.
30.
31.
32.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
33.
34.
35.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
36.
37.
38.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
39.
40.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业废弃物处理的技术与流程优化
- 工业废水处理技术与案例分析
- 工业安全风险评估与预警系统建设
- 工业废水处理及再利用技术分析
- 工业机器人及自动化生产线的应用实践
- 工业污染防治技术与方法
- 工业自动化中的资源整合与利用
- 工业物联网的创新应用案例分析
- 工业清洁生产与环保材料的选择
- 工业节能减排的实践与政策支持研究
- 2024版压力容器设计审核机考题库-简答题3-1
- 2025中考语文常考作文押题(10大主题+10篇范文)
- 施工现场脚手架搭设的示例图解
- 2024年甘肃兰州中考满分作文《向内扎根向阳而生》
- 肝性脑病的临床观察与护理
- 2025(统编版)语文五年级下册第八单元解析+任务目标+大单元教学设计
- 《责任和担当》课件
- 涉外合同审查培训
- 2025年度医疗健康咨询服务兼职医生聘用合同
- 售后工作人员培训计划方案
- 农药经营雇佣合同(2篇)
评论
0/150
提交评论