版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于抛物线定义及标准方程第1页,共25页,2022年,5月20日,22点20分,星期四第2页,共25页,2022年,5月20日,22点20分,星期四抛物线是怎样形成的呢?第3页,共25页,2022年,5月20日,22点20分,星期四
平面内与一个定点F和一条定直线L(F不在L上)的距离相等的点的轨迹是什么?思考:请看动画演示第4页,共25页,2022年,5月20日,22点20分,星期四第5页,共25页,2022年,5月20日,22点20分,星期四1.抛物线的定义
平面内与一个定点F和一条定直线L(F不在L上)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点;定直线L叫做抛物线的准线.第6页,共25页,2022年,5月20日,22点20分,星期四二、标准方程··FMlN如何建立直角坐标系?第7页,共25页,2022年,5月20日,22点20分,星期四二、标准方程xyo··FMlNK设︱KF︱=p则F(,0),l:x=-
p2p2设动点M的坐标为(x,y),由定义可知,化简得y2=2px(p>0)如图,建立直角坐标系第8页,共25页,2022年,5月20日,22点20分,星期四
方程
y2=2px(p>0)叫做抛物线的标准方程其中p为正常数,它的几何意义是:
焦点到准线的距离第9页,共25页,2022年,5月20日,22点20分,星期四则F(,0),l:x=-
p2p2
一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式.y2=2px(p>0)表示抛物线的焦点在X轴的正半轴上
第10页,共25页,2022年,5月20日,22点20分,星期四图形标准方程焦点坐标准线方程3.四种抛物线的标准方程对比第11页,共25页,2022年,5月20日,22点20分,星期四
怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来?第12页,共25页,2022年,5月20日,22点20分,星期四抛物线的标准方程顶点在原点对称轴为x轴对称轴为y轴标准方程为y2=2px(p>0)标准方程为x2=2py(p>0)开口与x轴正向同向:y2=2px开口与x轴正向反向:y2=-2px开口与y轴正向同向:x2=2py开口与y轴正向反向:x2=-2py++已知抛物线的标准方程求焦点坐标和准线方程时,应先“定位”;后“定量”。第13页,共25页,2022年,5月20日,22点20分,星期四如何确定抛物线对称轴及开口方向一次项变量对称轴,开口方向看正负第14页,共25页,2022年,5月20日,22点20分,星期四例1求下列抛物线的焦点坐标和准线方程(1)y2=6x(2)2x2+5y=0(3)x=ay2(a≠0)解:(1)因为2p=6,p=3,(2)抛物线方程是2x2+5y=0,即x2=-y,2p=则焦点坐标是F(0,-),准线方程是y=(3)抛物线方程化为:y2=x则抛物线x=ay2的焦点坐标为(,0)准线方程为x=-准线方程是x=-所以焦点坐标是(,0),第15页,共25页,2022年,5月20日,22点20分,星期四再次强调解题技巧:
已知抛物线的标准方程求焦点坐标和准线方程时,应先“定位”;后“定量”。第16页,共25页,2022年,5月20日,22点20分,星期四例2根据下列条件写出抛物线的标准方程:
(1)焦点坐标是F(0,-2)
(2)焦点在直线3x-4y-12=0上
(3)
抛物线过点A(-3,2)。(1)因为焦点在y轴的负半轴上,并且p/2=2,p=4,
所以抛物线的方程是x2=-8y解:(2)由题意,焦点应是直线3x-4y-12=0与x轴或y轴的交点,
即A(4,0)或B(0,-3)当焦点为A点时,抛物线的方程是y2=16x当焦点为B点时,抛物线的方程是x2=-12y当抛物线的焦点在y轴的正半轴上时,
把A(-3,2)代入x2=2py,当焦点在x轴的负半轴上时,
把A(-3,2)代入y2=-2px,得p=949243∴抛物线的标准方程为x2=y或y2=-xoxyA(3)23得p=第17页,共25页,2022年,5月20日,22点20分,星期四变式训练1.根据下列条件写出抛物线的标准方程(1)焦点是F(3,0);(2)准线方程是x=1/4;(3)焦点到准线的距离是2;(4)焦点在直线3x-4y-12=0上.2.求下列抛物线的焦点坐标与准线方程(1)y2=28x;(2)4x2=3y;(3)2y2+5x=0;(4)y=4ax2y2=12xy2=-xy2=4x或y2=-4x或x2=4y或x2=-4yy2=16x或x2=-12y焦点(7,0),准线x=-7焦点(0,1/16a),准线y=-1/16a;焦点(0,3/16),准线y=-3/16焦点(-5/8,0),准线x=5/8第18页,共25页,2022年,5月20日,22点20分,星期四例4
:在抛物线y2=4x上求点M,使它到定点P(2,2)和焦点F的距离之和为最小。第19页,共25页,2022年,5月20日,22点20分,星期四例3:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,求点P的轨迹方程。第20页,共25页,2022年,5月20日,22点20分,星期四例5、M是抛物线y2=2px(P>0)上一点,若点
M的横坐标为X0,则点M到焦点的距离是
————————————X0+—2pOyx.FM.第21页,共25页,2022年,5月20日,22点20分,星期四例6
过抛物线y2=4x的焦点,斜率为2的直线L与抛物线相交于A,B两点,求线段AB的长。第22页,共25页,2022年,5月20日,22点20分,星期四
求过定点M(0,1)且与抛物线y2=2x只有一个公共点的直线方程。例7;第23页,共25页,2022年,5月20日,22点20分,星期四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全员安全再教育培训心得课件
- 养育女孩沟通指南
- 辅导机构消防安全自查手册
- 科技引领安全生产讲解
- 香云纱产品话术
- 商品企划面试全攻略
- 光纤入户培训
- 创新营销话术技巧
- 2025-2026学年教科版高二物理上学期期末常考题之环境保护与可持续发展
- 2025-2026学年统编版九年级语文上册考点梳理
- 喷绘安装合同范本
- 2025年区块链技术化妆品溯源发展报告
- 福建厦门大学教育研究院行政秘书招聘笔试真题2024
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 2026年湖南食品药品职业学院单招职业适应性测试题库带答案详解
- 《AQ 4272-2025铝镁制品机械加工粉尘防爆安全规范》专题研究报告
- 2025年度威海文旅发展集团有限公司招聘工作人员25人笔试参考题库附带答案详解(3卷)
- T-CNHC 4-2025 昌宁县低质低效茶园改造技术规程
- 2025年手术室护理实践指南试题(含答案)
- 黑龙江省哈尔滨市南岗区2024-2025学年(五四制)六年级上学期期末语文试题
- 2025年山东省政府采购专家入库考试真题(附答案)
评论
0/150
提交评论