2022年山东省青岛市城阳九中学数学八年级第一学期期末联考试题含解析_第1页
2022年山东省青岛市城阳九中学数学八年级第一学期期末联考试题含解析_第2页
2022年山东省青岛市城阳九中学数学八年级第一学期期末联考试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个2.对于,,,,,,其中分式有()A.个 B.个 C.个 D.个3.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是(

)A.1号袋 B.2号袋 C.3号袋 D.4号袋4.9的平方根是()A.3 B.±3 C. D.-5.以下列各组数据为边长作三角形,其中能组成直角三角形的是().A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,136.如图比较大小,已知OA=OB,数轴点A所表示的数为a()﹣.A.> B.< C.≥ D.=7.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.8.如果是方程ax+(a-2)y=0的一组解,则a的值是()A.1 B.-1 C.2 D.-29.立方根等于它本身的有()A.0,1 B.-1,0,1 C.0, D.110.若是完全平方式,则常数k的值为()A.6 B.12 C. D.11.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线12.如图,折叠直角三角形纸片的直角,使点落在上的点处,已知,,则的长是()A.12 B.10 C.8 D.6二、填空题(每题4分,共24分)13.把多项式分解因式的结果是_________.14.如图,,,,若,则的长为______.15.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为米,乙行驶的时间为秒,与之间的关系如图所示,则甲的速度为每秒___________米.16.如图,在中,,,,为的中点,为线段上任意一点(不与端点重合),当点在线段上运动时,则的最小值为__________.17.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为________.18.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若AB=20,则BD的长是.三、解答题(共78分)19.(8分)已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=,QC=QA.∵BP=PQ=QC,∴在△APQ中,PQ=(等量代换)∴△APQ是三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠.又∵∠AQP是△AQC的外角,∴∠AQP=∠+∠=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=.20.(8分)如图,已知直线,直线,直线,分别交轴于,两点,,相交于点.(1)求,,三点坐标;(2)求21.(8分)(1)解不等式.(2)解不等式组.22.(10分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.23.(10分)现有甲乙丙三个厂家都生产一种灯泡,他们对外都宣称自己的灯泡使用寿命为12个月,为了检查他们灯泡的真正使用寿命,现随机从三个厂家均抽查11个灯泡进行检测,得到的数据如下:(单位:月)甲厂78999111314161719乙厂779910101212121314丙厂77888121314151617(1)这三个生产厂家分别利用了统计中的哪个特征数(平均数,众数,中位数)进行宣传;(2)如果三家灯泡售价相同,作为顾客,你会选择购买哪家的产品,请说明理由.24.(10分)一个正方形的边长增加,它的面积增加了,求原来这个正方形的边长.25.(12分)如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠426.已知:如图,,求证:.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【点睛】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.2、D【分析】根据分式的定义即可求出答案.【详解】,,,是分式,共4个;

故答案为:D.【点睛】本题考查分式的定义,解题的关键是正确理解分式的定义.3、C【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【详解】解:根据轴对称的性质可知,台球走过的路径为:

故选C.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.4、B【分析】根据平方根的定义解答即可.【详解】±±1.故选B.【点睛】本题考查了平方根,注意一个正数的平方根有两个.5、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A、;B、;C、;D、.根据勾股定理7,24,25能组成直角三角形.故选C.考点:勾股定理的逆定理.6、A【分析】由勾股定理求出OB=,即可确定A点表示的数为,比较和的大小即可求解.【详解】解:由勾股定理可求OB=,∵OA=OB,∴OA=,∴A点表示的数为,∵,故选:A.【点睛】本题主要考查勾股定理和实数的大小比较,掌握勾股定理和实数的大小比较方法是解题的关键.7、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.8、B【解析】将代入方程ax+(a−2)y=0得:−3a+a−2=0.解得:a=−1.故选B.9、B【分析】根据立方根性质可知,立方根等于它本身的实数2、1或-1.【详解】解:∵立方根等于它本身的实数2、1或-1.

故选B.【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,2的立方根是2.10、D【解析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2⋅2a⋅3b,解得k=±12.故选D.11、C【解析】试题解析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.故选C.考点:1.三角形的中线;2.三角形的面积.12、A【分析】由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.【详解】:∵△ADE与△ADC关于AD对称,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C=90°,∴∠BED=90°,∵∠B=30°,∴BD=2DE,∵BC=BD+CD=36,∴36=2DE+DE,∴DE=12;故答案为:A.【点睛】本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.二、填空题(每题4分,共24分)13、【分析】先提取公因式m,再利用平方差公式分解即可.【详解】,故答案为:.【点睛】本题考查了因式分解-提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.15、6【解析】由函数图像在B点处可知50秒时甲追上乙,C点为甲到达目的地,D点为乙达到目的地,故可设甲的速度为x,乙的速度为y,根据题意列出方程组即可求解.【详解】依题意,设甲的速度为x米每秒,乙的速度为y米每秒,由函数图像可列方程解得x=6,y=4,∴甲的速度为每秒6米故填6.【点睛】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.16、【分析】本题为拔高题,过点C作AB的垂线交AB于点F,可以根据直角三角形中30°角的特性,得出EF与关系,最后得到,可知当DE-EF为0时,有最小值.【详解】过点C作AB的垂线交AB于点F,得到图形如下:根据直角三角形中30°角的特性,可知由此可知故可知,当DE与EF重合时,两条线之间的差值为0,故则的最小值为.【点睛】本题属于拔高题,类似于“胡不归”问题,综合性强,是对动点最值问题的全面考察,是中学应该掌握的内容.17、13【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【详解】设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即:a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,2ab=12,∴a2+b2=13,故答案为:13.【点睛】本题主要考查几何图形的面积关系与整式的运算,掌握整式的加减乘除混合运算法则以及完全平方公式,是解题的关键.18、1【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB∴∠BCD=∠A=30°,∵AB=20,∴BC=AB=20×=10,∴BD=BC=10×=1.故答案为1.考点:含30度角的直角三角形.三、解答题(共78分)19、BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.【分析】根据线段垂直平分线的性质可得PA=BP,QC=QA,再根据等量关系可得PQ=PA=QA,可得△APQ是等边三角形,根据等边三角形的性质可得∠AQP=60°,再根据三角形三角形外角的性质和等腰的性质可求∠C的度数.【详解】解:证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=BP,QC=QA.(垂直平分线上任意一点,到线段两端点的距离相等)∵BP=PQ=QC,∴在△APQ中,PQ=PA=QA(等量代换)∴△APQ是等边三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠QAC.又∵∠AQP是△AQC的外角,∴∠AQP=∠C+∠QAC=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=30°.故答案为:BP,(垂直平分线上任意一点,到线段两端点的距离相等),PA=QA,等边,QAC,C,QAC,30°.【点睛】考查了线段垂直平分线的性质,等边三角形的判定与性质,三角形外角的性质和等腰三角形的性质,关键是得到△APQ是等边三角形.20、(1)A,,;(2).【分析】(1)分别将y=0代入和中即可求得,的坐标,联立两个一次函数形成二元一次方程组,方程组的解对应的x值和y值就是A点的横坐标和纵坐标;(2)以BC为底,根据A点坐标求出三角形的高,利用三角形的面积计算公式求解即可.【详解】(1)由题意得,令直线,直线中的为0,得:,.由函数图像可知,点的坐标为,点的坐标为.∵、相较于点.∴解及得:,.∴点A的坐标为.(2)由(1)可知:,又由函数图像可知.【点睛】本题考查一次函数与一元一次方程,一次函数与二元一次方程组.掌握两个一次函数的交点坐标就是联立它们所形成的二元一次方程组的解是解决此题的关键.21、(1);(2)【分析】(1)直接移项解不等式即可;(2)先分别解一元一次不等式,再求交集即可.【详解】解:(1);(2)解由①得:,由②得:,∴原不等式组的解集为.【点睛】本题是对一元一次不等式组的考查,熟练掌握一元一次不等式组的解法是解决本题的关键.22、(1)见解析;(2)∠BAC=67.5°.【分析】(1)证出△ADC是等腰直角三角形,得出AD=CD,∠CAD=∠ACD=45°,由SAS证明△ABD≌△CED即可;(2)由角平分线定义得出∠ECD=∠ACD=22.5°,由全等三角形的性质得出∠BAD=∠ECD=22.5°,即可得出答案.【详解】解:(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质以及角平分线定义,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.23、(1)甲厂用了统计中的平均数、乙厂用了统计中的众数、丙厂用了统计中的中位数进行宣传;(2)答案不唯一,详见解析【分析】(1)根据数据分析,三组数据平均数、中位数、众数为12的符合题意,可得乙厂的广

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论