2022-2023学年弥勒市朋普中学数学八年级第一学期期末统考试题含解析_第1页
2022-2023学年弥勒市朋普中学数学八年级第一学期期末统考试题含解析_第2页
2022-2023学年弥勒市朋普中学数学八年级第一学期期末统考试题含解析_第3页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.等腰三角形的两边长是6cm和3cm,那么它的周长是A.9cm B.12cm C.12cm或15cm D.15cm2.下列计算正确的是()A. B. C.3 D.3.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.4.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为()A.m≥4 B.m≤6 C.4<m<6 D.4≤m≤65.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行 B.相交 C.垂直 D.平行、相交或垂直6.已知是二元一次方程组的解,则的值为A.-1 B.1 C.2 D.37.下列命题是真命题的是()A.同位角相等 B.两直线平行,同旁内角相等C.同旁内角互补 D.平行于同一直线的两条直线平行8.计算的结果,与下列哪一个式子相同?()A. B. C. D.9.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是()A.等边三角形 B.等腰三角形 C.直角三角形 D.钝角三角形10.下列各式中,计算结果是的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知实数,满足,,则的值为_________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=________.13.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.14.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=_____cm.15.当x_______时,分式无意义,当x=_________时,分式的值是0.16.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.17.如图,在中,,平分,交于点,若,,则周长等于__________.18.实数,,,,中,其中无理数出现的频数是______________.三、解答题(共66分)19.(10分)已知,求代数式的值.20.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(3,1),C(2,3).(1)作出关于轴对称的图形,并写出点的坐标;(2)求的面积.21.(6分)如图①,中,,、的平分线交于O点,过O点作交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图③,若中的平分线BO与三角形外角平分线CO交于O,过O点作交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.22.(8分)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出关于直线MN对称的;(2)写出的长度;(3)如图(2),A,C是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.23.(8分)如图,直线l1:y=﹣x与直线l2相交于点A,已知点A的纵坐标为,直线l2交x轴于点D,已知点D横坐标为﹣4,将直线l1向上平移3个单位,得到直线l3,交x轴于点C,交直线l2于点B.(1)求直线l2的函数表达式;(2)求的面积.24.(8分)如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.

(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.25.(10分)已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN26.(10分)如图,已知:在坐标平面内,等腰直角中,,,点的坐标为,点的坐标为,交轴于点.(1)求点的坐标;(2)求点的坐标;(3)如图,点在轴上,当的周长最小时,求出点的坐标;(4)在直线上有点,在轴上有点,求出的最小值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.考点:等腰三角形的性质;三角形三边关系.2、D【分析】先对各选项进行计算,再判断.【详解】A选项:不能直接相加,故错误;B选项:,故错误;C选项:3,故错误;D选项:,故正确;故选:D.【点睛】考查立方根、平方根和算术平方根的问题,关键是根据立方根、平方根和算术平方根的定义分析.3、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.4、D【分析】根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.【详解】解:如图所示,当直线l垂直平分OA时,O′B′和过A点且平行于x轴的直线有交点,∵点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°,∴∠BAO=30°,OB=2,∴OA=4,∵直线l垂直平分OA,点P(m,0)是直线l与x轴的交点,∴OP=4,∴当m=4;作BB″∥OA,交过点A且平行于x轴的直线与B″,当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,∵四边形OBB″O′是平行四边形,∴此时点P与x轴交点坐标为(6,0),由图可知,当OB关于直线l的对称图形为O′B′到O″B″的过程中,点P符合题目中的要求,∴m的取值范围是4≤m≤6,故选:D.【点睛】本题考查坐标与图形的变化−对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.5、A【解析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.6、A【解析】试题分析:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1;故选A.考点:二元一次方程的解.7、D【分析】利用平行线的性质及判定定理进行判断即可.【详解】A、两直线平行,同位角才相等,错误,是假命题;B、两直线平行,同旁内角互补,不是相等,错误,是假命题;C、两直线平行,同旁内角才互补,错误,是假命题;D、平行于同一直线的两条直线平行,是真命题;故选:D.【点睛】主要考查了命题的真假判断,以及平行线的判定定理.真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.8、D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.9、B【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.10、D【解析】试题分析:利用十字相乘法进行计算即可.原式=(x-2)(x+9)故选D.考点:十字相乘法因式分解.二、填空题(每小题3分,共24分)11、【分析】根据公式即可求出,从而求出的值.【详解】解:∵,∴==∴故答案为:.【点睛】此题考查的是完全平方公式的变形,掌握完全平方公式的特征是解决此题的关键.12、11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x+y=11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.13、(4,2)【解析】试题考查知识点:图形绕固定点旋转思路分析:利用网格做直角三角形AMB,让△AMB逆时针旋转90°,也就使AB逆时针旋转了90°,由轻易得知,图中的AB′就是旋转后的位置.点B′刚好在网格格点上,坐标值也就非常明显了.具体解答过程:如图所示.做AM∥x轴、BM∥y轴,且AM与BM交于M点,则△AMB为直角三角形,线段AB绕点A按逆时针方向旋转90°,可以视为将△AMB逆时针方向旋转90°()得到△ANB′后的结果.∴,AN⊥x轴,NB′⊥y轴,点B′刚好落在网格格点处∵线段AB上B点坐标为(1,3)∴点B′的横坐标值为:1+3=4;纵坐标值为:3-1=2即点B′的坐标为(4,2)试题点评:在图形旋转涉及到的计算中,还是离不开我们所熟悉的三角形.14、1【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴,∵△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在Rt△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=1,∴CD=1.在Rt△ACD中,.故答案为1.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键.15、x=-2x=2【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得出x的值.【详解】分式无意义,即x+2=0,∴x=-2,分式的值是0,∴可得4−x=0,x+2≠0,解得:x=2.故答案为x=-2,x=2.【点睛】此题考查分式的值为零的条件和无意义的情况,解题关键在于掌握其定义.16、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.17、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.18、【解析】根据题意可知无理数有:和π,因此其出现的频数为2.故答案为2.三、解答题(共66分)19、(x-y)1-xy;1.【分析】化简=(x-y)1-xy,将x和y值代入计算即可.【详解】解:∵=(x-y)1-xy∴当时,原式=11-1=1.【点睛】本题考查代数式求值,解题的关键是灵活运用所学知识将待求代数式进行变形,属于中考常考题型.20、(1)作图见解析;.(2)【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)直接求出三角形的底边和高,根据三角形的面积公式,即可得到答案.【详解】解:(1)如图:为所求;点的坐标为:(2,);(2)根据题意,,边上的高为2,∴.【点睛】本题主要考查作图——轴对称变换,熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点是解题的关键.21、(1),证明见解析;(2)存在,证明见解析;(3)等腰三角形为△BEO,△CFO,,证明见解析.【分析】(1)根据角平分线的定义和平行线的性质可得∠EOB=∠EBO,∠FOC=∠FCO,进而可得EO=EB,FO=FC,然后根据线段间的和差关系即得结论;(2)同(1)的思路和方法解答即可;(3)同(1)的思路和方法可得EO=EB,FO=FC,再根据线段间的和差关系即得结论.【详解】(1)EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(2)当AB≠AC时,EF=BE+CF仍然成立.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(3)等腰三角形为△BEO,△CFO,EF=BE﹣FC.理由如下:如图③,∵OB、OC平分∠ABC、∠ACG,∴∠ABO=∠OBC,∠ACO=∠OCG,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCG,∴∠EOB=∠EBO,∠FOC=∠ACO,∴EO=EB,FO=FC,∴△BEO与△CFO为等腰三角形,∵EF=EO-OF,∴EF=BE-CF.【点睛】本题考查了角平分线的定义、平行线的性质以及等腰三角形的判定等知识,属于常考题型,熟练掌握上述知识是解题的关键.22、(1)详见解析;(2)10;(3)详见解析.【分析】(1)直接利用轴对称图形的性质分别得出对应点位置进而得出答案.(2)利用网格直接得出AA1的长度.(3)利用轴对称求最短路线的方法得出点位置.【详解】解:(1)如图(1)所示:,即为所求;(2)的长度为:10;(3)如图(2)所示:点即为所求,此时最小.【点睛】本题考查坐标系中轴对称图形,关键在于熟悉相关基本概念作图.23、(1)y=x+2;(2)【分析】(1)根据待定系数法求得即可;

(2)求得平移后的解析式,联立解析式求得B的坐标,进而求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.【详解】解:(1)∵直线l1:y=﹣x与直线l2相交于点A,已知点A的纵坐标为,∴A(﹣1,),设直线l2的函数表达式为y=kx+b,将A(﹣1,),D(﹣4,0)代入得,解得,∴直线l2为y=x+2;(2)将直线l1向上平移3个单位,得到直线l3为y=,解得,∴B(,),在直线l3为y=﹣x+3中,令y=0,则x=2,∴C(2,0),∴S△BOC==.【点睛】本题考查了一次函数的图象与几何变换,待定系数法求一次函数的解析式,三角形面积等,求得交点坐标是解题的关键.24、(1)见解析;(2)18cm【分析】(1)连接BE、EC,只要证明Rt△BFE≌Rt△CGE,得BF=CG,再证明Rt△AFE≌Rt△AGE得:AF=AG,根据线段和差定义即可解决.(2由AG=5cm可得AB+AC=10cm即可得出△ABC的周长.【详解】(1)延长AB至点M,过点E作EF⊥BM于点F∵AE平分∠BACEG⊥AC于点G∴EG=EF,∠EFB=∠EGC=90°连接BE,EC∵点D是BC的中点,DE⊥BC∴BE=EC在Rt△BFE与Rt△CGE中∴Rt△BFE≌Rt△CGE(HL)∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC=AB+BF+AG=AF+AG在Rt△AFE与Rt△AGE中∴Rt△AFE≌Rt△AGE(HL)∴AF=AG∴AB+AC=2AG(2)∵AG=5cm,AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC的周长为AB+AC+BC=8+10=18cm.【点睛】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.25、见解析【分析】先由角平分线性质得到DM=DN,再证Rt△DMB≌Rt△DNC,根据全等三角形对应边相等即可得到答案.【详解】证明:∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN

又∵点D是BC的中点∴BD=CD

,

∴Rt△DMB≌Rt△DNC(HL)∴BM=CN.【点睛】本题主要考查角平分线的性质、三角形全等的判定(AAS、ASA、SSS、SAS、HL),熟练掌握全等三角形的判定是解题的关键.26、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为;(4)最小值为1.【分析】(1)过C作直线EF∥x轴,分别过点A、B作直线EF的垂线,垂足分别为E、F,证明ΔACE≌ΔCBF,得到CF=AE,BF=CE,即可得到结论;(2)分别过点A、B作x轴的垂线,垂足分别为G、H易证ΔAGD≌ΔBHD,得到GD=HD.由G(-3,0),H(1,0),即可得到结论;(3)作点A(-5,1)关于轴的对称点A'(-5,-1),连接AP,A'P,A'C.过A'作A'R⊥y轴于R,则AP=A'P,根据ΔACP的周长=AC+AP+CP=AC+A'P+CP≥AC+A'C.根据△A'RC和△COP都是等腰直角三角形,得到PO=CO=4,从而得到结论.(4)作点B关于直线AC的对称点B'.过B'作B'R⊥y轴于R,过B作BT⊥y轴于T.可证明△B'RC≌△BTC,根据全等三角形对应边相等可B'的坐标.过点B'作x轴的垂线交直线AC于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论