




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.设是方程的两个实数根,则的值为()A.2017 B.2018 C.2019 D.20204.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大5.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:46.如图,在5×6的方格纸中,画有格点△EFG,下列选项中的格点,与E,G两点构成的三角形中和△EFG相似的是()A.点A B.点B C.点C D.点D7.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A. B. C. D.8.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-39.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.310.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为()A. B.4 C. D.二、填空题(每小题3分,共24分)11.若一元二次方程有两个不相等的实数根,则k的取值范围是.12.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.13.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是_____.14.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac-b+1=0;④OA·OB=.其中正确结论的个数是______个.15.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.16.如图是某幼儿园的滑梯的简易图,已知滑坡AB的坡度是1:3,滑梯的水平宽是6m,则高BC为_______m.17.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.18.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线和直线外一点.求作:直线的垂线,使它经过.作法:如图2.(1)在直线上取一点,连接;(2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,连接交于点;(3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.请你写出上述作垂线的依据:______.三、解答题(共66分)19.(10分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为10cm,点A,C,E在同一条直线上,且∠CAB=75°,如图1.(1)求车架档AD的长;(1)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°="0.966,"cos75°=0.159,tan75°=3.731)20.(6分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.21.(6分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.22.(8分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).23.(8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?24.(8分)解方程25.(10分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,;(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.26.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【点睛】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.2、C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.3、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3,变形为()-(),代入即可得到答案.【详解】解:∵a、b是方程的两个实数根,
∴=-3;
又∵,
∴,∴
=()-()=2017-(-3)
=1
即的值为1.
故选:D.【点睛】本题考查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键.4、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,
∴摸出黑球的概率是,
摸出白球的概率是,
摸出红球的概率是,
∵<<,
∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5、C【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.6、D【分析】根据网格图形可得所给△EFG是两直角边分别为1,2的直角三角形,然后利用相似三角形的判定方法选择答案即可.【详解】解:观察图形可得△EFG中,直角边的比为,观各选项,,只有D选项三角形符合,与所给图形的三角形相似.故选:D.【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.7、C【解析】如图,连接BP,由反比例函数的对称性质以及三角形中位线定理可得OQ=BP,再根据OQ的最大值从而可确定出BP长的最大值,由题意可知当BP过圆心C时,BP最长,过B作BD⊥x轴于D,继而根据正比例函数的性质以及勾股定理可求得点B坐标,再根据点B在反比例函数y=(k>0)的图象上,利用待定系数法即可求出k的值.【详解】如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(-)=,故选C.【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP过点C时OQ有最大值是解题的关键.8、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9、C【分析】观察表格可得0.04更接近于0,得到所求方程的近似根即可.【详解】解:观察表格得:方程x2+3x−5=0的一个近似根为1.2,故选:C.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.10、C【分析】由,利用平行线分线段成比例可得DE与EF之比,再根据DF=12,可得答案.【详解】,,,,,,故选C.【点睛】本题考查了平行线分线段成比例,牢记平行线分线段成比例定理及推论是解题的关键.二、填空题(每小题3分,共24分)11、:k<1.【详解】∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.12、1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.13、【分析】首先解不等式得x<1,然后找出这六个数中符合条件的个数,再利用概率公式求解.【详解】解:∵x+1<2∴x<1∴在﹣1,0,1,2,3,4这六个数中,满足不等式x+1<2的有﹣1、0这两个,∴满足不等式x+1<2的概率是,故答案为:.【点睛】本题考查求概率,熟练掌握概率公式是解题的关键.14、1【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2−4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(−c,0),再把A(−c,0)代入y=ax2+bx+c得ac2−bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=−x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2−4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(−c,0),把A(−c,0)代入y=ax2+bx+c得ac2−bc+c=0,∴ac−b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=,所以④正确.故答案为:1.
【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.15、0或﹣1【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.16、1【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,
∴AC=6m,∴BC=×6=1m.故答案为:1.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.17、【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).18、直径所对的圆周角是直角【分析】由题意知点E在以PA为直径的圆上,根据“直径所对的圆周角是直角”可得∠PEA=90°,即PE⊥直线a.【详解】由作图知,点E在以PA为直径的圆上,所以∠PEA=90°,则PE⊥直线a,所以该尺规作图的依据是:直径所对的圆周角是直角,故答案为:直径所对的圆周角是直角.【点睛】本题主要考查作图−尺规作图,解题的关键是掌握线段中垂线的尺规作图及其性质和直径所对的圆周角是直角.三、解答题(共66分)19、(1)75cm(1)2cm【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=,∴车架档AD的长为75cm.(1)过点E作EF⊥AB,垂足为点F,距离EF=AEsin75°=(45+10)sin75°≈61.7835≈2.∴车座点E到车架档AB的距离是2cm.(1)在Rt△ACD中利用勾股定理求AD即可.(1)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.20、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.21、(1)y关于x的函数关系式是y=﹣x2+16x;(2)当x是6或11时,围成的养鸡场面积为61平方米;(3)不能围成面积为71平方米的养鸡场;理由见解析.【解析】(1)根据矩形的面积公式进行列式;把y的值代入(1)中的函数关系,求得相应的x值即可.把y的值代入(1)中的函数关系,求得相应的x值即可.【详解】解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x.依题意得y=x(32÷2﹣x)=﹣x2+16x.答:y关于x的函数关系式是y=﹣x2+16x;(2)由(1)知,y=﹣x2+16x.当y=61时,﹣x2+16x=61,即(x﹣6)(x﹣11)=1.解得x1=6,x2=11,即当x是6或11时,围成的养鸡场面积为61平方米;(3)不能围成面积为71平方米的养鸡场.理由如下:由(1)知,y=﹣x2+16x.当y=71时,﹣x2+16x=71,即x2﹣16x+71=1因为△=(﹣16)2﹣4×1×71=﹣24<1,所以该方程无解.即:不能围成面积为71平方米的养鸡场.考点:1、一元二次方程的应用;2、二次函数的应用;3、根的判别式22、广告牌的高度为54.6米.【分析】由题可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出关于CD的等式并解出,从而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的长度,最后用CE-CD即为所求.【详解】解:∵又,在中,即答:广告牌的高度为54.6米.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的关键.23、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.24、,.【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法.详解:方法一:移项,得,二次项系数化为1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x−1)(2x−1)=0,解得:,.点睛:考查解一元二次方程,常见的方法有:直接开方法,配方法,公式法和因式分解法,观察题目选择合适的方法.25、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD【解析】试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(1)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和1S△BPD建立方程求出其解即可.(3)如图1,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国硬脂酸钴粘合剂行业投资前景及策略咨询研究报告
- 2025-2030年中国3C电子线行业市场分析及未来发展趋势建议报告
- 日间手术课件
- 2025-2030小型拖拉机行业市场深度分析及发展策略研究报告
- 2025至2031年中国玻璃走珠瓶行业投资前景及策略咨询研究报告
- 2025至2031年中国电梯智能控制柜行业投资前景及策略咨询研究报告
- 学前班毕业典礼家长发言稿
- 2025-2030年中国3G手机市场发展前景展望及投资战略研究报告
- 2025至2031年中国熄火电子磁行业投资前景及策略咨询研究报告
- 2025-2030年中国LCD用光学级PMMA挤出导光板市场需求调研及投资战略决策报告
- 充值合同范本
- MSDS中文版(锂电池电解液)
- 《职业病防治法》知识考试题库160题(含答案)
- 全国初中数学青年教师优质课一等奖《反比例函数的图象和性质》教学设计
- 2023-2024学年人教版数学八年级下册期中复习卷
- MBA-组织行为学课件
- 环境监测仪器安装施工方案(更新版)
- (招标投标)地形图测绘技术标书OK
- 人保查勘服务流程
- 机械加工工艺过程培训课件
- 外科学(2)智慧树知到课后章节答案2023年下温州医科大学
评论
0/150
提交评论