


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《圆动点》试题选辑ABQOPNM1、如图,已知⊙O的半径为6cm,射线经过点,,射线与⊙O相切于点.两点同时从点出发,点以5cm/s的速度沿射线方向运动,点以4cm/s的速度沿射线方向运动.设运动时间为s.ABQOPNM(1)求的长;(2)当为何值时,直线与⊙O相切?2、如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(tABNM(1)试写出点A,B之间的距离ABNM与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?3、如图1,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形?(2)如图2,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?4、如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm.现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1㎝/s的速度向点A运动,点F沿折线A—D—C以2㎝/s的速度向点C运动.设点E离开点B的时间为t(s).(l)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?(3)当1≤t<2,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.图9—15ABCQPOD5、如图9—15,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1cm/s的速度运动,动点Q沿CB方向从点C开始向点B以2cm/s图9—15ABCQPOD(1)求⊙O的直径;(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求四边形PQCD为等腰梯形时,四边形PQCD的面积.(3)是否存在某一时刻t,使直线PQ与⊙O相切,若存在,求出t的值;若不存在,请说明理由.6、已知:如图所示,直线l的解析式为,并且与x轴、y轴分别交于点A、B。(1)求A、B两点的坐标;(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x轴正方向运动,问在什么时刻与直线l相切;(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动过程中,点P在动圆的圆面(圆上和圆内部)上,一共运动了多长时间?7、如图①,②,在平面直角坐标系中,点的坐标为(4,0),以点为圆心,4为半径的圆与轴交于,两点,为弦,,是轴上的一动点,连结.(1)求的度数;(2)如图①,当与⊙A相切时,求的长;(3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?8、如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠30°,BC=12cm。半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。设运动时间为t(s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC三边围成的区域有重叠部分,求重叠部分的面积。OyxCDBAO1O260°l9、如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于两点,过作直线与轴负方向相交成60°的角,且交轴于点,以点为圆心的圆与轴相切于点.OyxCDBAO1O260°l(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.10、如图1,在⊙O中,AB为⊙O的直径,AC是弦,,.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当时,求动点M所经过的弧长.11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗科技助力精准医疗的突破与挑战
- 企业健康保险与医疗保险的结合管理
- 2025年互联网个人工作总结模版
- 医疗技术转移与商业化中的知识产权挑战与对策
- 医疗器械行业中的项目管理挑战与机遇
- 嘉善物业公司今冬明春火灾防控工作总结模版
- AI技术在商业决策分析中的应用价值
- 丝绸加工合同范例
- 公司电脑转让合同范例
- 仓库保洁合同范例
- 2025直播带货主播签约合作合同(范本)
- 人事档案管理系统验收报告文档
- 《刑事诉讼法学教学》课件
- 2025年高考物理复习之小题狂练600题(解答题):机械波(10题)
- 首都经济贸易大学《中级微观经济学》2023-2024学年第一学期期末试卷
- 2018年高考英语全国一卷(精校+答案+听力原文)
- 工程决算书(结算书)模板
- 零星工程维修 投标方案(技术方案)
- 统编版 高中语文 必修下册 第六单元《促织》
- 2024年房屋代持协议书范本
- 2024厨房改造合同范本
评论
0/150
提交评论