版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,若,则的值为()A.1 B. C. D.2.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了3.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.4.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.5.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元6.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势7.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.8.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种9.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.10.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.1011.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i12.已知集合,,则为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.14.抛物线上到其焦点的距离为的点的个数为________.15.记为数列的前项和.若,则______.16.设,若函数有大于零的极值点,则实数的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.18.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.19.(12分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.20.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.21.(12分)已知函数.(1)设,若存在两个极值点,,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).22.(10分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.2、C【答案解析】
假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【题目详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【答案点睛】本题考查了逻辑推理能力,属基础题.3、D【答案解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.4、C【答案解析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【题目详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【答案点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.5、A【答案解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【题目详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【答案点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.6、D【答案解析】
根据折线图依次判断每个选项得到答案.【题目详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【答案点睛】本题考查了折线图,意在考查学生的理解能力.7、D【答案解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【题目详解】因为偶函数在减,所以在上增,,,,∴.故选:D【答案点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.8、B【答案解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【题目详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【答案点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.9、D【答案解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【题目详解】因为复数z满足,所以,所以z的虚部为.故选:D.【答案点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.10、C【答案解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【题目详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【答案点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.11、D【答案解析】
两边同乘-i,化简即可得出答案.【题目详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【答案点睛】的共轭复数为12、C【答案解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【题目详解】因为集合,,所以故选:C【答案点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【题目详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【答案点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.14、【答案解析】
设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【题目详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【答案点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.15、1【答案解析】
由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.【题目详解】由,得,.且,则,即.数列是以16为首项,以为公比的等比数列,则.故答案为:1.【答案点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.16、【答案解析】
先求导数,求解导数为零的根,结合根的分布求解.【题目详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【答案点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【答案解析】
(1)当时,,求得其导函数,,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性;(3)当时,,,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【题目详解】(1)当时,,所以,,所以函数的图象在处的切线方程为,即;(2)由已知得,,令,得,所以当时,,当时,,所以在上是减函数,在上是增函数;(3)当时,,,由(2)得在上单调递减,在单调递增,所以,且时,,当时,,,所以当方程有两个不相等的实数根,不妨设,且有,,构造函数,则,当时,所以,在上单调递减,且,,由,在上单调递增,.所以.【答案点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.18、(1)见解析(2)【答案解析】
(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,,时,的最小值,即可得出实数的取值范围.【题目详解】(1),.当即时,,,此时,在上单调递增;当即时,时,,在上单调递减;时,,在上单调递增;当即时,,,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【答案点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.19、(1)(2)【答案解析】
(1)求出及其导函数,利用研究的单调性和最值,根据零点存在定理和零点定义可得的范围.(2)令,题意说明时,恒成立.同样求出导函数,由研究的单调性,通过分类讨论可得的单调性得出结论.【题目详解】解(1)函数所以讨论:①当时,无零点;②当时,,所以在上单调递增.取,则又,所以,此时函数有且只有一个零点;③当时,令,解得(舍)或当时,,所以在上单调递减;当时,所以在上单调递增.据题意,得,所以(舍)或综上,所求实数的取值范围为.(2)令,根据题意知,当时,恒成立.又讨论:①若,则当时,恒成立,所以在上是增函数.又函数在上单调递增,在上单调递增,所以存在使,不符合题意.②若,则当时,恒成立,所以在上是增函数,据①求解知,不符合题意.③若,则当时,恒有,故在上是减函数,于是“对任意成立”的充分条件是“”,即,解得,故综上,所求实数的取值范围是.【答案点睛】本题考查函数零点问题,考查不等式恒成立问题,考查用导数研究函数的单调性.解题关键是通过分类讨论研究函数的单调性.本题难度较大,考查掌握转化与化归思想,考查学生分析问题解决问题的能力.20、(1);(2)【答案解析】
(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年梧州学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2024年绵阳师范学院马克思主义基本原理概论期末考试题含答案解析(夺冠)
- 2024年淮南市职工大学马克思主义基本原理概论期末考试题及答案解析(必刷)
- 2025年广西卫生职业技术学院单招职业技能测试题库带答案解析
- 2024年海盐县招教考试备考题库附答案解析(必刷)
- 2025年天津滨海职业学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2026年旅游酒店管理基础专业试题集
- 2026年寒假XX市第五中学-居家安全-主题班会设计:案例分析与互动环节
- 医院医务人员传染病防控知识培训制度
- 医院医疗废物处置设施验收制度
- 一年级《池上》课件
- 铝合金门窗设计说明
- MUX-2MD继电保护信号数字复接接口装置说明书
- 食品行业仓库盘点制度及流程
- 2025年机车调度员岗位培训手册考试题库
- 北京市通州区2023-2024学年九年级上学期期末考试语文试卷(含答案)
- 2024四川绵阳涪城区事业单位选调(聘)笔试管理单位遴选500模拟题附带答案详解
- 发货组年终总结
- 《化工制图》试题及参考答案 (C卷)
- 2024年普通高等学校招生全国统一考试政治试题全国乙卷含解析
- 新疆维吾尔自治区伊犁哈萨克自治州2023-2024学年八年级下学期期中数学试题
评论
0/150
提交评论