




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,A、B、C是⊙O上互不重合的三点,若∠CAO=∠CBO=20°,则∠AOB的度数为()A.50° B.60° C.70° D.80°2.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则下列各点中在⊙A外的是()A.点A B.点B C.点C D.点D3.一元二次方程的两根之和为()A. B.2 C. D.34.点关于轴对称的点的坐标是()A. B. C. D.5.下列各式属于最简二次根式的是()A. B. C. D.6.如图,已知,是的中点,且矩形与矩形相似,则长为()A.5 B. C. D.67.如图,在△ABC中,M,N分别为AC,BC的中点.则△CMN与△CAB的面积之比是()A.1:2 B.1:3 C.1:4 D.1:98.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.9.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.10.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.11.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.12.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的周长等于()A.40 B. C.24 D.20二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为________.14.若为一元二次方程的一个根,则__________.15.关于x的方程的两个根是﹣2和1,则nm的值为_____.16.在二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x-2-101234y72-1-2m27则m的值为_____.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.18.在矩形中,,,绕点顺时针旋转到,连接,则________.三、解答题(共78分)19.(8分)如果一条抛物线与坐标轴有三个交点.那么以这三个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)命题“任意抛物线都有抛物线三角形”是___________(填“真”或“假”)命题;(2)若抛物线解析式为,求其“抛物线三角形”的面积.20.(8分)已知关于x的一元二次方程x1﹣1(a﹣1)x+a1﹣a﹣1=0有两个不相等的实数根x1,x1.(1)若a为正整数,求a的值;(1)若x1,x1满足x11+x11﹣x1x1=16,求a的值.21.(8分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针旋转所得的.22.(10分)如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.23.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.24.(10分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?25.(12分)解方程:x2+2x﹣1=1.26.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
参考答案一、选择题(每题4分,共48分)1、D【分析】连接CO并延长交⊙O于点D,根据等腰三角形的性质,得∠CAO=∠ACO,∠CBO=∠BCO,结合三角形外角的性质,即可求解.【详解】连接CO并延长交⊙O于点D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故选D.【点睛】本题主要考查圆的基本性质,三角形的外角的性质以及等腰三角形的性质,添加和数的辅助线,是解题的关键.2、C【解析】试题分析:根据勾股定理求出AC的长,进而得出点B,C,D与⊙A的位置关系.解:连接AC,∵AB=3cm,AD=4cm,∴AC=5cm,∵AB=3<4,AD=4=4,AC=5>4,∴点B在⊙A内,点D在⊙A上,点C在⊙A外.故选C.考点:点与圆的位置关系.3、D【分析】直接利用根与系数的关系求得两根之和即可.【详解】设x1,x2是方程x2-1x-1=0的两根,则
x1+x2=1.
故选:D.【点睛】此题考查根与系数的关系,解题关键在于掌握运算公式.4、D【分析】根据特殊锐角的三角函数值,先确定点M的坐标,然后根据关于x轴对称的点的坐标x值不变,y值互为相反数的特点进行选择即可.【详解】因为,所以,所以点所以关于x轴的对称点为故选D.【点睛】本题考查的是特殊角三角函数值和关于x轴对称的点的坐标特点,熟练掌握三角函数值是解题的关键.5、B【解析】根据最简二次根式的定义进行判断即可.【详解】解A、,不是最简二次根式;B、2不能再开方,是最简二次根式;C、,不是最简二次根式;D、=2,不是最简二次根式.故选:B.【点睛】本题考查了最简二次根式,掌握二次根式的性质及最简二次根式的定义是解答本题的关键.6、B【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:∵矩形ABDC与矩形ACFE相似,∴,∵,是的中点,∴AE=5∴,解得,AC=5,故选B.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.7、C【解析】由M、N分别为AC、BC的中点可得出MN∥AB,AB=2MN,进而可得出△ABC∽△MNC,根据相似三角形的性质即可得到结论.【详解】∵M、N分别为AC、BC的中点,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故选C.【点睛】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC∽△MNC是解题的关键.8、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.10、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.11、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.12、D【分析】根据菱形的性质可求得BO、AO的长,AC⊥BD,根据勾股定理可求出AB,进而可得答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,,,AC⊥BD,则在Rt△ABO中,根据勾股定理得:,∴菱形ABCD的周长=4×5=1.故选:D.【点睛】本题考查了菱形的性质和勾股定理,属于基础题目,熟练掌握菱形的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接AB,从图中明确,然后根据公式计算即可.【详解】解:连接,∵,∴是直径,根据同弧对的圆周角相等得:,∵,∴,,即圆的半径为2,∴.故答案为:.【点睛】本题考查了同弧对的圆周角相等;90°的圆周角对的弦是直径;锐角三角函数的概念;圆、直角三角形的面积分式,解题的关键是熟练运用所学的知识进行解题.14、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:∵为一元二次方程的一个根,∴,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.15、﹣1【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.【详解】解:∵关于x的方程的两个根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.16、-1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【详解】解:根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,-1)是对称点,∴m=-1.【点睛】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键.17、1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可.【详解】解:∵四边形ABCD是矩形,
∴AD=BC=8,∠A=90°,
∵AB=6,
∴BD===10,
∵△BEF是由△ABD旋转得到,
∴△BDF是等腰直角三角形,
∴DF=BD=10,
故答案为10.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型.三、解答题(共78分)19、(1)假;(2)3【分析】(1)判定是真假命题,要看抛物线与坐标轴交点的个数,当有3个交点时是真命题,有两个或一个交点时不能构成三角形.(2)先求抛物线与坐标轴的交点坐标,再求面积即可.【详解】解:(1)假命题.如果抛物线与x坐标轴没有交点时,不能形成三角形.(2)抛物线解析式为与轴交点坐标为,与轴交点坐标为,“抛物线三角形”的面积为【点睛】本题考查了抛物线的性质,再求抛物线与坐标轴的交点组成的三角形的面积.20、(2)a=2,2;(2)a=﹣2.【分析】(2)根据关于x的一元二次方程x2-2(a-2)x+a2-a-2=0有两个不相等的实数根,得到△=[-2(a-2)]2-4(a2-a-2)>0,于是得到结论;
(2)根据x2+x2=2(a-2),x2x2=a2-a-2,代入x22+x22-x2x2=26,解方程即可得到结论.【详解】解:(2)∵关于x的一元二次方程x2﹣2(a﹣2)x+a2﹣a﹣2=0有两个不相等实数根,∴△=[﹣2(a﹣2)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=2,2;(2)∵x2+x2=2(a﹣2),x2x2=a2﹣a﹣2,∵x22+x22﹣x2x2=26,∴(x2+x2)2﹣3x2x2=26,∴[2(a﹣2)]2﹣3(a2﹣a﹣2)=26,解得:a2=﹣2,a2=6,∵a<3,∴a=﹣2.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程是解答此题的关键.21、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.【解析】分别作出三顶点关于原点的对称点,再顺次连接即可得;
分别作出点、绕点按顺时针旋转所得的对应点,再顺次连接即可得.【详解】解:(1)如图所示,即为所求,其中点的坐标为.(2)如图所示,即为所求.【点睛】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.22、(1)如图,即为所求,见解析;点的对应点的坐标为,点的对应点的坐标为;(2)点的对应点的坐标为.【分析】(1)延长BO,CO到B′、C′,使OB′、OC′的长度是OB、OC的2倍.顺次连接三点即可;
(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【详解】(1)如图,即为所求,点的对应点的坐标为,点的对应点的坐标为.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.23、⊙O的半径为.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。【详解】解:如图,连接OA.交BC于H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,设⊙O的半径为r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w(单位:元)与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)①由题意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000]=﹣10x2+1400x﹣40000;(2)设销售
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软木制品生命周期评价与环境影响考核试卷
- 足浴店顾客投诉预防与应对考核试卷
- 纺纱生产过程中的节能减排考核试卷
- 烘炉热效率计算与优化考核试卷
- 纸质汽车内饰设计创新与市场分析考核试卷
- 羽绒制品消费者需求分析与产品设计考核试卷
- 葡萄酒酿造可持续发展战略考核试卷
- 定制型国际商务考察旅游合作协议
- 高端展览活动安保及安全检查服务协议
- 美团新员工培训
- 《陆上风电场工程概算定额》(NB-T 31010-2019)
- 小学科学冀人版六年级下册全册同步练习含答案
- 邮政储蓄银行-客户经理(个人消费贷款)-试题+答案
- 教学能力比赛-教学实施报告(汽车运用与维修)1
- 青年筑梦之旅创业计划书
- 髂动脉瘤破裂的护理课件
- 网络设备的认证与授权管理最佳实践手册
- 山东省枣庄市山亭区2022年部编版小升初语文试卷
- 自然辩证法概论试题及答案
- 设备安全操作培训
- 社会学知识竞赛(58道含答案)
评论
0/150
提交评论