版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球2.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.23.一元二次方程的根为()A. B. C. D.4.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A. B.C. D.5.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.如图,在正方形中,分别为的中点,交于点,连接,则()A.1:8 B.2:15 C.3:20 D.1:67.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A. B. C. D.8.关于反比例函数,下列说法不正确的是()A.y随x的增大而减小 B.图象位于第一、三象限C.图象关于直线对称 D.图象经过点(-1,-5)9.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为10.若点都是反比例函数图像上的点,并且,则下列结论中正确的是()A. B.C.随的增大而减小 D.两点有可能在同一象限11.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y212.下列一元二次方程中,两实数根之和为3的是()A. B. C. D.二、填空题(每题4分,共24分)13.设、是方程的两个实数根,则的值为_____.14.分解因式:=__________15.已知两个相似三角形与的相似比为1.则与的面积之比为________.16.因式分解:_______________________.17.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.18.如图,在中,,为边上的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则的长为____________.三、解答题(共78分)19.(8分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)20.(8分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,=,求CE的长.21.(8分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?22.(10分)如图,在中,,以斜边上的中线为直径作,分别与交于点.(1)过点作于点,求证:是的切线;(2)连接,若,求的长.23.(10分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1.利用画树状图或列表求下列事件的概率.(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数.24.(10分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.25.(12分)如图,在小山的东侧处有一一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达处,这时气球上的人发现,在处的正西方向有一处着火点,5分钟后,在处测得着火点的俯角是15°,求热气球升空点与着火点的距离.(结果保留根号,参考数据:)26.解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2﹣3x+1=1.
参考答案一、选择题(每题4分,共48分)1、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.2、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.3、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.4、B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【分析】延长交延长线于点,可证,,,【详解】解:延长交延长线于点在与中故选A【点睛】本题考查了相似三角形的性质.7、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为=.故选:A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.8、A【分析】根据反比例函数的图像及性质逐个分析即可.【详解】解:选项A:要说成在每一象限内y随x的增大而减小,故选项A错误;选项B:,故图像经过第一、三象限,所以选项B正确;选项C:反比例函数关于直线对称,故选项C正确;选项D:将(-1,-5)代入反比例函数中,等号两边相等,故选项D正确.故答案为:A.【点睛】本题考查了反比例函数的性质;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.9、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.10、A【分析】根据反比例函数的图象及性质和比例系数的关系,即可判断C,然后根据即可判断两点所在的象限,从而判断D,然后判断出两点所在的象限即可判断B和A.【详解】解:∵中,-6<0,∴反比例函数的图象在二、四象限,在每一象限,y随x的增大而增大,故C错误;∵∴点在第四象限,点在第二象限,故D错误;∴,故B错误,A正确.故选A.【点睛】此题考查的是反比例函数的图象及性质,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.11、A【分析】根据函数解析式画出抛物线以及在图象上标出三个点的位置,根据二次函数图像的增减性即可得解.【详解】∵函数的解析式是,如图:∴对称轴是∴点关于对称轴的点是,那么点、、都在对称轴的右边,而对称轴右边随的增大而减小,于是.故选:A.【点睛】本题考查了二次函数图象的对称性以及增减性,画出函数图像是解题的关键,根据题意画出函数图象能够更直观的解答.12、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有△≥0且,分别计算即可判断.【详解】解:A、∵a=1,b=3,c=-3,∴,;B、∵a=2,b=-3,c=-3,∴,;C、∵a=1,b=-3,c=3,∴,原方程无解;D、∵a=1,b=-3,c=-3,∴,.故选:D.【点睛】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况,若方程有根方可用根与系数关系.二、填空题(每题4分,共24分)13、-1【分析】根据根与系数的关系可得出,,将其代入中即可得出结论.【详解】∵、是方程的两个实数根,∴,,∴.故答案为-1.【点睛】本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.14、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).15、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,
∴这两个三角形的面积之比为2.
故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.16、【分析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.17、【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.18、【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,则GF=10,则AF=16,AC=20,在Rt△ACF中利用勾股定理可求出CF的值.【详解】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,∴GF=BG=10,则AF=26-10=16,AC=2×10=20,∵在Rt△ACF中,∠CFA=90°,∴即故答案是:1.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.三、解答题(共78分)19、能,.【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率.【详解】能设第4次、第5次转出的数字分别为和,根据题意得:,解得:,所以后两次数字之和为8或9;画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种,所以.【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用.求出事件的所有情况和符合条件的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.20、(1)证明见详解;(2).【分析】(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.
(2)根据AC=4,=,求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出,求出即可.【详解】(1)答:BC与⊙O相切.
证明:连接AE,
∵AC是⊙O的直径
∴∠E=90°,
∴∠EAD+∠AFE=90°,
∵BF=BC,
∴∠BCE=∠BFC=∠AFE,
∵E为弧AD中点,
∴∠EAD=∠ACE,
∴∠BCE+∠ACE=∠EAD+∠AFE=90°,
∴AC⊥BC,
∵AC为直径,
∴BC是⊙O的切线.
(2)解:∵⊙O的半为2,
∴AC=4,
∵=∴BC=3,AB=5,
∴BF=3,AF=5-3=2,
∵∠EAD=∠ACE,∠E=∠E,
∴△AEF∽△CEA,
∴∴EC=2EA,
设EA=x,则有EC=2x,
由勾股定理得:,∴(负数舍去),
即.【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力.21、每件降价4元【详解】试题分析:设每件降价元,则可多售出5件,根据题意可得:化简整理得解得:经检验都是方程的解,但是题目要求x≤10∴x=36不符合题意,舍去即x=4答:每件降价4元.考点:一元二次方程的应用22、(1)见解析;(2)【分析】(1)连接,ND,可知∠CND=90°,再证,即可证,最后根据切线的定义求得答案;【详解】解:如图连接,,在中,为斜边中线,∴,∵是的直径.∴,∴,∵等腰三线合一,∴,∵在中,为斜边的中点,∴,∴,∴,∵,∴,∴,∴,∴,∵是的半径,∴是的切线.(2)连接,则四边形为矩形,,∴,,∴∴【点睛】本题考查的是圆的切线的判定,垂径定理,等腰三角形的性质,矩形的判定和勾股定理,是一道综合性较强的习题,能够充分调动所学知识多次利用勾股定理求解是解题的关键.23、(1)图表见解析,;(2)图表见解析,【分析】(1)通过列表可得出所有等可能的结果数与取出的两个都是奇数的结果数,再利用概率公式求解即可;(2)通过画树状图可得出所有等可能的结果数与取出的三个都是奇数的结果数,再利用概率公式求解即可.【详解】解:(1)根据题意列表如下:乙甲123(1,3)(2,3)4(1,4)(2,4)1(1,1)(2,1)由表格可得所有等可能的结果有6种,其中两个都是奇数的可能有两种,∴P(两个奇数)=;(2)根据题意画树状图如下:由树状图可得所有等可能的结果有12种,其中三个都是奇数的可能有两种,∴P(两个奇数)=.【点睛】本题考查的知识点是利用画树状图或列表求事件的概率,比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年泰和县人民法院公开招聘聘任制司法辅助人员备考题库及完整答案详解1套
- 2026年西藏自治区人民政府办公厅急需紧缺人才引进6人备考题库及1套完整答案详解
- 2025-2030中国女装高领毛衣行业市场发展分析及发展趋势预测与战略投资研究报告
- 2025至2030中国抗精神分裂症长效注射剂依从性改善与市场推广报告
- 2025至2030智能礼品包装技术应用与产业链投资机会研究报告
- 中国古代史研究
- 公务员阆中市委组织部关于阆中市2025年考调35人备考题库及一套完整答案详解
- 2025-2030中国草甘膦产业销售规模与未来发展潜力评估研究报告
- 2026年西昌市财政局单位招聘政府雇员备考题库附答案详解
- 2026年睢阳区消防救援大队招聘政府专职消防员备考题库附答案详解
- 2026年扬州工业职业技术学院高职单招职业适应性测试参考题库含答案解析
- 2026国家电投集团苏州审计中心选聘15人笔试模拟试题及答案解析
- 2026年桐城师范高等专科学校单招职业技能考试题库及答案1套
- 雾化吸入操作教学课件
- 2025年小学图书馆自查报告
- 【语文】广东省佛山市罗行小学一年级上册期末复习试卷
- 2025年医疗器械注册代理协议
- 新疆三校生考试题及答案
- 2025新疆亚新煤层气投资开发(集团)有限责任公司第三批选聘/招聘笔试历年参考题库附带答案详解
- 围手术期心肌梗塞的护理
- 超市门口钥匙管理制度
评论
0/150
提交评论