下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.2.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,3.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.324.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.5.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.6.若实数满足不等式组,则的最大值为()A. B. C.3 D.27.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.78.已知,函数,若函数恰有三个零点,则()A. B.C. D.9.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3 B.2 C.4 D.510.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.11.已知复数,若,则的值为()A.1 B. C. D.12.已知集合,则元素个数为()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.14.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________15.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.16.已知是等比数列,且,,则__________,的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?18.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.19.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.20.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.从①,②,③这三个条件中任选一个,补充在上面问题中并作答.21.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.22.(10分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【题目详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【答案点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.2、A【答案解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【题目详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.【答案点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.3、B【答案解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【题目详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【答案点睛】本小题主要考查随机数表法进行抽样,属于基础题.4、D【答案解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.5、C【答案解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【题目详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【答案点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.6、C【答案解析】
作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【题目详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【答案点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.7、B【答案解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【题目详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【答案点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.8、C【答案解析】
当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【题目详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【答案点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.9、A【答案解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【题目详解】,,对任意的,存在实数满足,使得,易得,即恒成立,,对于恒成立,设,则,令,在恒成立,,故存在,使得,即,当时,,单调递减;当时,,单调递增.,将代入得:,,且,故选:A【答案点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.10、B【答案解析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【题目详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【答案点睛】本题主要考查定积分的概念与计算,属于中等题.11、D【答案解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.12、B【答案解析】
作出两集合所表示的点的图象,可得选项.【题目详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【答案点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.14、【答案解析】
根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.【题目详解】如图所示,设,由与相似,可得,解得,再由与相似,可得,解得,由三角形的面积公式,可得的面积为.故答案为:.【答案点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题.15、1【答案解析】
由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解.【题目详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1.【答案点睛】本题考查了二项式定理及展开式通项公式,属于中档题.16、5【答案解析】,即的最大值为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当BP为cm时,α+β取得最小值.【答案解析】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.【题目详解】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'(t)>0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,因为恒成立,所以f(t)<0,所以tan(α+β)<0,,因为y=tanx在上是增函数,所以当时,α+β取得最小值.【答案点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.18、(1)();(2).【答案解析】
(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,,计算得到答案.【题目详解】(1)由消得,即,是过原点且倾斜角为的直线,∴的极坐标方程为().(2)由得,∴,由得∴,∴.【答案点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.19、(1)(2)①2②期望值为X900600300100P【答案解析】
(1)一件手工艺品质量为B级的概率为.(2)①由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,,即,由得,所以当时,,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.②由上可得一件手工艺品质量为A级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C级的概率为,一件手工艺品质量为D级的概率为,所以X的分布列为X900600300100P则期望为.20、见解析【答案解析】
选择①或②或③,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【题目详解】选择①:因为,所以,所以.令,即,,所以使得的正整数的最小值为;选择②:因为,所以,.因为,所以不存在满足条件的正整数;选择③:因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全教育考核试题及答案
- 妇科罕见肿瘤手术淋巴结处理策略
- 女职工健康档案数字化管理路径
- 大数据支持下的职业病高危行业预警分级模型
- 初中语法考试及答案解析
- 2026年口腔护理(牙周病护理)试题及答案
- 2025年中职西餐烹饪(披萨制作)试题及答案
- 2025年高职给排水工程技术(排水系统维护)试题及答案
- 2025年中职汽车美容与装潢(汽车美容技术)试题及答案
- 2025年大学化学(化学教育)试题及答案
- 钳工个人实习总结
- 大健康养肝护肝针专题课件
- 道路高程测量成果记录表-自动计算
- 关于医院“十五五”发展规划(2026-2030)
- DB31-T 1587-2025 城市轨道交通智能化运营技术规范
- 2025水泥厂生产劳务承包合同
- 施工项目高效人员配置与设备管理方案
- 采血后预防淤青的按压方式
- 医学师承出师考核申请表
- 光伏电站基础知识500题及答案
- 深度学习:从入门到精通(微课版)全套教学课件
评论
0/150
提交评论