



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
要点重温之等差、等比数列1.公差不为0的等差数列的通项是关于n的一次函数,一次项系数是公差;前n项和是关于n的二次函数,二次项系数是公差之半且常数项为0;即等差数列{}中,=+(为公差,∈),(∈)。证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:an-an-1=常数(=常数)(,也可以证明连续三项成等差(比)数列。[举例]{}、{}都是各项为正的数列,对任意的,都有、、成等差数列,、、成等比数列.试问{}是否为等差数列,为什么?解析:由=得=,于是=(,又2=+,∴2=+(,即2=+(,∴数列{}是等差数列。注意:当用定义证明等差(比)数列受阻时,别忘了这“一招”!上述思路的关键是由“=”到“=(”的过渡,即所谓“升降标”,这也是处理数列问题的一个通法。[巩固]已知等差数列的前项和为,且,则过两点、的直线的斜率为:(A)4(B)3(C)2(D)1[迁移]公差非零的等差数列中,前n项之和为,则数列……中A.不存在等于零的项B.最多有一项等于零C.最多有2项等于零D.可有2项以上等于零2.等差数列{an}中,m+n=p+q,则am+an=ap+aq,等比数列{an}中,m+n=p+q,则aman=ap·aq(m、n、p、q∈);等差(等比)数列中简化运算的技巧多源于这条性质。[举例1]在等差数列中,为常数,则其前()项和也为常数(A)6(B)7(C)11(D)12解析:等差数列的前k项和为常数即为常数,而=3为常数,∴2=为常数,即前11项和为常数,选C。注意:千万不要以为==,那就大错特错了!所谓“下标和相等则对应项的和相等”,是指两项和等于两项和,三项和等于三项和……。等差数列中“n项和”与“两项和(转化为a1+an)”有关,某一项或某几项和均需转化为“两项和”才能与“n项和”联系起来。[举例2]等比数列{}中,a4+a6=3,则a5(a3+2a5+a7)=解析:a5(a3+2a5+a7)=a5a3+2a52+a5a7=a42+2a4a6+a62=(a4+a[巩固]在正项的等差数列{}和正项的等比数列{}中,有,,试比较与的大小。[迁移]等比数列{}中,、是方程()的两根,则=若把条件中的“”换成“”呢?若把条件中的“、”换成“、”呢?[提高]在等差数列中,前n项之和为,已知S5=25,Sn=64,Sn-5=9,则n=_____3.等差数列前n项和、次n项和、再后n项和(即连续相等项的和)仍成等差数列;等比数列前n项和(和不为0)、次n项和、再后n项和仍成等比数列。[举例1]在等比数列中,S2=40,S4=60,则S6等于()A10B70C80D解析:在等比数列中,第一个两项和为40,第二个两项和为20(注意:S4是前4项和,不是两项和),则第三个两项和为10,S6为三个两项和相加,选B。[举例2]在等差数列中,前n项之和为,已知S3=4,S18-S15=12,则S18=解析:在等差数列中,第一个三项和为4,第六个三项和为12,S18即首项为4,末项为12的等差数列的6项和,为48。[巩固]在等差数列{an}中,其前n项和为Sn,已知S5=2-b,S10=4-b,则S15=_________4.等差数列当首项a1>0且公差d<0,前n项和存在最大值。利用不等式组:确定n值,即可求得Sn的最大值。等差数列当首项a1<0且公差d>0时,前n项和存在最小值。类似地确定n值,即可求得sn的最小值;也可视sn为关于n的二次函数,通过配方求最值;还可以利用二次函数的图象来求。[举例]设等差数列满足3a8=5a13,且a1>0,则的前__________项和最大解析:思路一:由3a8=5a13得:d=a1,若前n项和最大,则,又a1>0得:,∴n=20,即的前20项和最大。这一做法最通行。思路二:Sn=na1+n(n-1)d=na1-n(n-1)a1=-a1(n2-40n),当且仅当n=20时Sn最大。这一做法突显了数列的函数特征。思路三:由3a8=5a13得15a8=25a13,即S15=S25,又∵a1>0,∴Sn的图象是开口向下的抛物线上的点列,对称轴恰为n=20,故n=20时Sn最大。这一做法中几乎没有运算,但设计太过“精妙”,非对等差数列的性质融会贯通而不能为,仅供欣赏。[巩固]数列是等差数列,是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是:A.d<0B.a7=0C.S9>S5D.S6,S7均为的最大值()[迁移]在等差数列则在前n项和Sn中最大的负数为 A.S16 B.S17 C.S18 D.S19()5.注意:等比数列求和公式是一个分段函数na1(q=1)Sn=则涉及到等比数列求和时若公比不是具体数值须分类讨论解题。[举例]已知等比数列的公比为q,前n项和为Sn,且S3,S9,S6成等差数列,求q3的值。解析:不可直接用等比数列的求和公式,需讨论:若q=1,S3=3a1,S9=9a1,S6=6a1,则有:18a1=3a1+6a1,则a1=0,与是等比数列矛盾,∴q≠1,于是有:,化简得:,∴。本题还可以用:第一个三项和、第二个三项和、第三个三项和成等比数列解决,留读者自己完成。[巩固]已知an=1+r+r2+r3+…rn-1,则数列的前n项和=______________6.解等差(比)数列有关通项、求和问题时别忘了“基本元”,即把问题转化为首项a1,公差d(或公比q)的方程(组)或不等式(组)去处理。已知等差或等比数列中的任两项也可用am-an=(m-n)d,或=qm-n。[举例1]等差数列的前n项和Sn,若S3=9,S13=26求S23的值。解析:用求和公式解方程组,求出a1,d,再代入求和公式中求S23,这是通法。也可简化为:S3=3a2=9a2=3,S13=13a7=26a7=2,∴a12=1(a2、a7、a12成等差数列),S23=23a12=23。[举例2]已知等差数列{an}中,a3与a5的等差中项等于2,又a4与a6的等比中项等于6,则a10等于(A)54(B)50(C)26(D)16解析:a3与a5的等差中项等于2,即a4=2;a4与a6的等比中项等于6,即a6=18;于是2d=16,a10=a6+4d=50,选B。[巩固]]已知等差数列{an}的首项a1=120,公差d=-4,若Sn≤an(n>1),则n的最小值为/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年水果种植公司水果成熟度判断标准制度
- 2026年纺织科技公司追溯信息上传管理制度(优化版)
- (正式版)DB5404∕T 0002-2022 《林芝商品肉鸡养殖技术规范》
- 宠物店狗狗知识培训内容课件
- 饲养家蚕了解我国的养蚕历史教学设计初中生物学冀少版2024七年级上册-冀少版2024
- Module 4 Life in the future Unit 2 Everyone will have a small plane.(Reading) 说课稿-2023-2024学年外研版英语七年级下册
- 江苏省苏州市八年级政治下册 第五单元 与法同行 第17课 尊重别人隐私 维护合法权益 第三框 保护自己的隐私说课稿 苏教版
- Unit 4 A good read说课稿-2023-2024学年初中英语八年级下册牛津译林版
- Grammar and usage说课稿高中英语牛津译林版2020必修第一册-译林版2020
- 2.12 宋元时期的都市和文化 教学设计 统编版七年级历史下册
- 2025年《高级汽车维修工》考试练习题及答案
- 农村小学安全培训知识课件
- 2025年工程项目管理试题及答案
- 桥梁工程技术总结报告合集
- 第6课 书衣之美说课稿初中美术沪书画版五四学制2024六年级上册-沪书画版五四学制2024
- 心血管疾病预防规定
- 中班 数学 家里的数字课件
- 新教材人教版高中数学必修第二册全册教案(教学设计)
- 毕业论文:电气自动化技术毕业论文
- 教改项目项目结项汇报
- 高一下分科文科班第一次主题班会
评论
0/150
提交评论