




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.观察下列图形,是中心对称图形的是()A. B. C. D.2.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y13.如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为().A.; B.; C.; D..4.如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:①②③④关于的方程有一个根为其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个5.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6 B.15 C.24 D.276.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是()组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385A.0.05 B.0.38 C.0.57 D.0.957.己知是一元二次方程的一个根,则的值为()A.1 B.-1或2 C.-1 D.08.若反比例函数的图象过点A(5,3),则下面各点也在该反比例函数图象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)9.如图,在平面直角坐标系中,在轴上,,点的坐标为,绕点逆时针旋转,得到,若点的对应点恰好落在反比例函数的图像上,则的值为()A.4. B.3.5 C.3. D.2.510.如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A.3.4m B.3.5m C.3.6m D.3.7m11.如图,为的直径,,为上的两点,且为的中点,若,则的度数为()A. B. C. D.12.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.已知,则的值是_____.14.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.15.已知线段a=4cm,b=9cm,则线段a,b的比例中项为_________cm.16.已知二次函数(a是常数,a≠0),当自变量x分别取-6、-4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1__y2(填“>”、“<”或“=”).17.已知,点A(-4,y1),B(,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.18.如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄色和蓝色三种颜色.在桌面上掷这个小正方体,要使事件“红色朝上”的概率为,那么需要把__________个面涂为红色.三、解答题(共78分)19.(8分)如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.20.(8分)解方程:.21.(8分)如图,点的坐标为,把点绕坐标原点逆时针旋转后得到点.(1)求点经过的弧长;(结果保留)(2)写出点的坐标是________.22.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.23.(10分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)24.(10分)如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.25.(12分)如图,同学们利用所学知识去测量海平面上一个浮标到海岸线的距离.在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,小宇同学在A处观测得浮标在北偏西60°的方向,小英同学在距点A处60米远的B点测得浮标在北偏西45°的方向,求浮标C到海岸线l的距离(结果精确到0.01m).26.如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据中心对称图形的概念判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的识别,熟练掌握概念是解题的关键.2、C【解析】将点A(-1,y1),B(1,y2),C(3,y3)分别代入反比例函数y=﹣5x,并求得y1、y2【详解】根据题意,得
y1=-5-1=5,即y1=5,
y2=-51=-5,即y2=-5,
y3=-53=-53,即【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,解题关键是熟记点的横纵坐标满足反比例函数的解析式.3、D【解析】连接.,由切线的性质可知,由四边形内角和可求出的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知的度数.【详解】解:连接.,∵.分别与相切于.两点,∴,,∴,∴,∴.故选:D.【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.4、C【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC,且OA<1,可判断③;由OA=OC,得到方程有一个根为-c,设另一根为x,则=2,解方程可得x=4+c即可判断④;从而可得出答案.【详解】由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵OA=OC,∴方程有一个根为-c,设另一根为x.∵对称轴为直线x=2,∴=2,解得:x=4+c.故④正确;综上可知正确的结论有三个.故选C.【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.5、C【解析】根据三边对应成比例,两三角形相似,得到△ABC∽△DEF,再由相似三角形的性质即可得到结果.【详解】∵AD=2OA,BE=2OB,CF=2OC,∴===,∴△ABC∽△DEF,∴==,∵△ABC的面积是3,∴S△DEF=27,∴S阴影=S△DEF﹣S△ABC=1.故选:C.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.6、D【分析】先计算出样本中身高不高于180cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不高于180cm的频率==0.1,所以估计他的身高不高于180cm的概率是0.1.故选:D.【点睛】本题考查了概率,灵活的利用频率估计概率是解题的关键.7、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=2代入方程求解可得m的值.【详解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故选:C.【点睛】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型.8、D【解析】先利用待定系数法求出反比例函数的解析式,然后将各选项的点代入验证即可.【详解】将点代入得:,解得则反比例函数为:A、令,代入得,此项不符题意B、令,代入得,此项不符题意C、令,代入得,此项不符题意D、令,代入得,此项符合题意故选:D.【点睛】本题考查了待定系数法求函数解析式、以及确定某点是否在函数上,依据题意求出反比例函数解析式是解题关键.9、C【分析】先通过条件算出O’坐标,代入反比例函数求出k即可.【详解】由题干可知,B点坐标为(1,0),旋转90°后,可知B’坐标为(3,2),O’坐标为(3,1).∵双曲线经过O’,∴1=,解得k=3.故选C.【点睛】本题考查反比例函数图象与性质,关键在于坐标平面内的图形变换找出关键点坐标.10、B【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【详解】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故选:B.【点睛】本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11、C【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【详解】∵AB为⊙O的直径,C为的中点,
∴OC⊥AD,
∵∠BAD=20°,
∴∠AOC=90°-∠BAD=70°,
∵OA=OC,
∴∠ACO=∠CAO=故选:C.【点睛】此题考查了垂径定理、等腰三角形的性质以及直角三角形的性质.此题难度不大,解题的关键是C为的中点,根据垂径定理的推论,即可求得OC⊥AD.12、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【点睛】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.二、填空题(每题4分,共24分)13、【解析】因为已知,所以可以设:a=2k,则b=3k,将其代入分式即可求解.【详解】∵,∴设a=2k,则b=3k,∴.故答案为.【点睛】本题考查分式的基本性质.14、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得:,∴,∴c1=6,c2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.16、>【分析】先求出抛物线的对称轴为,由,则当,y随x的增大而减小,即可判断两个函数值的大小.【详解】解:∵二次函数(a是常数,a≠0),∴抛物线的对称轴为:,∵,∴当,y随x的增大而减小,∵,∴;故答案为:.【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.17、【分析】由题意可先求二次函数y=-x2+2x+c的对称轴为,根据点A关于x=1的对称点即可判断y1与y2的大小关系.【详解】解:二次函数y=-x2+2x+c的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.18、【分析】根据题意可知共有6种等可能结果,所以要使事件“红色朝上”的概率为,则需要有2种符合题意的结果,从而求解.【详解】解:∵一个质地均匀的小正方体有六个面∴在桌面上掷这个小正方体,共有6种等可能结果,其中把2个面涂为红色,则使事件“红色朝上”的概率为故答案为:2【点睛】本题考查简单的概率计算,理解概率的概念并根据概率的计算公式正确计算是本题的解题关键.三、解答题(共78分)19、(1)D(﹣3,﹣4);(1)当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3<a≤﹣1.【分析】(1)利用待定系数法以及等腰直角三角形的性质求出EC,OE即可解决问题.(1)如图,设M(a,a﹣1),则N(a,),由EC=MN构建方程求出特殊点M的坐标即可判断.【详解】解:(1)由题意A(1,0),B(0,﹣1),∴OA=OB=1,∴∠OAB=∠CAE=45°∵AE=3OA,∴AE=3,∵EC⊥x轴,∴∠AEC=90°,∴∠EAC=∠ACE=45°,∴EC=AE=3,∴C(4,3),∵反比例函数y=经过点C(4,3),∴k=11,由,解得或,∴D(﹣3,﹣4).(1)如图,设M(a,a﹣1),则N(a,)∵四边形ECMN是平行四边形,∴MN=EC=3,∴|a﹣1﹣|=3,解得a=6或﹣1或﹣1±(舍弃),∴M(6,5)或(﹣1,﹣3),观察图象可知:当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3<a≤﹣1.【点睛】考核知识点:反比例函数与一次函数.数形结合,解方程组求图象交点,根据图象分析问题是关键.20、,【分析】先移项,再提公因式,利用因式分解法求解即可.【详解】解:移项,得(x+1)²-(5x+5)=0提取公因式,得(x+1)(x+1-5)=0所以有,x+1=0或者x+1-5=0所以,.【点睛】本题考查了分解因式法解一元二次方程,有多种解法,可用自己熟悉的来解.21、(1);(2)【分析】(1)过点P作x轴的垂线,求出OP的长,由弧长公式可求出弧长;(2)作PA⊥x轴于A,QB⊥x轴于B,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△OBQ≌△PAO,得出OB=PA,QB=OA,由点P的坐标为(1,3),得出OB=PA=3,QB=OA=4,即可得出点Q的坐标.【详解】解:(1)过作轴于,∵,∴,∴点经过的弧长为;(2)把点绕坐标原点逆时针旋转后得到点,分别过点、做轴的垂线,∴,,∴,,,∴,,则点的坐标是.【点睛】本题考查了坐标与图形性质、全等三角形的判定与性质和弧长公式;熟练掌握坐标与图形性质,证明三角形全等是解决问题的关键.22、(1)50,360;(2).【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率23、(1)相切,证明见解析;(2)答案见解析【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.24、(1)见解析;(1)见解析;(3)1.【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ADB=90°,又由CD平分∠ACB,根据圆周角定理,可得AD=BD,继而可得△ABD是等腰直角三角形;
(1)证明△ADE≌△BDE',可得∠DAE=∠DBE',则∠OBE'=∠ABD+∠DBE'=90°,结论得证;
(3)取AG的中点H,连结DH,则DH=AH=GH,求出DH=DF=1,则答案可求出.【详解】(1)∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵CD平分∠ACB,∴∠ACD=∠DCB,∴,∴AD=BD,∴△ABD是等腰直角三角形.(1)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=11.5°,取AG的中点H,连结DH,∵∠ADB=90°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年三醋酸纤维素膜项目建议书
- 2025办公室租赁合同范本4
- 2025年解除商业租赁合同范本标准版
- 2025标准管理咨询服务合同
- 2025办公设备采购合同协议
- 2025标准版权许可合同样式
- 2025中国钢铁产业陕西分公司集体合同
- 2025设备租赁合同版范本
- 2025苏州市购房合同样本
- 2025四川公共租赁住房租赁合同范本
- 班级安全员信息员培训
- 科技领域实验室质量控制关键技术与方法
- 商场运营部的培训
- 四年级 人教版 数学《小数的意义》课件
- 《糖尿病与肥胖》课件
- 医疗纠纷防范与医患沟通
- 服装设计与工艺基础知识单选题100道及答案
- 钢结构施工管理培训课件
- 护理MDT多学科联合查房
- 易制毒化学品采购员岗位职责
- 《浅析我国绿色金融体系的构建》5600字(论文)
评论
0/150
提交评论