2022年陕西省西安市西北大附属中学数学九年级上册期末综合测试模拟试题含解析_第1页
2022年陕西省西安市西北大附属中学数学九年级上册期末综合测试模拟试题含解析_第2页
2022年陕西省西安市西北大附属中学数学九年级上册期末综合测试模拟试题含解析_第3页
2022年陕西省西安市西北大附属中学数学九年级上册期末综合测试模拟试题含解析_第4页
2022年陕西省西安市西北大附属中学数学九年级上册期末综合测试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>42.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度3.已知的半径为,点的坐标为,点的坐标为,则点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定4.在平面直角坐标系中,以原点为位似中心,位似比为:,将缩小,若点坐标,,则点对应点坐标为()A., B. C.或, D.,或,5.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④6.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠07.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.2 B. C. D.8.用配方法解方程时,原方程可变形为()A. B. C. D.9.下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:1.则周长的比为5:1;④两个大小不相等的圆一定是位似图形.A.1个 B.2个 C.3个 D.4个10.一个扇形的半径为4,弧长为,其圆心角度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.12.在矩形中,,,绕点顺时针旋转到,连接,则________.13.已知和时,多项式的值相等,则m的值等于______.14.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.15.已知二次函数的图象如图所示,下列结论:①;②;③;④,其中正确的是_________.(把所有正确结论的序号都填在横线上)16.方程x2=2020x的解是_____.17.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________18.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.三、解答题(共66分)19.(10分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.(1)求的值;(2)若,求直线的解析式;(3)若,其它条件不变,直接写出与的位置关系.20.(6分)如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.21.(6分)如图,是圆的直径,平分,交圆于点,过点作直线,交的延长线于点,交的延长线于点.(1)求证:是圆的切线;(2)若,,求的长.22.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)23.(8分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,(1)试证明:△AEP∽△ABC;(2)求y与x之间的函数关系式.24.(8分)如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.25.(10分)如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.(1)求b和c的值;(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.26.(10分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标.(2)求的面积.

参考答案一、选择题(每小题3分,共30分)1、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.2、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3、B【分析】根据题意先由勾股定理求得点P到圆心O的距离,再根据点与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.【详解】解:∵点P的坐标为(3,4),点的坐标为,∴由勾股定理得,点P到圆心O的距离=,∴点P在⊙O上.故选:B.【点睛】本题考查点与圆的位置关系,根据题意求出点到圆心的距离是解决本题的关键.4、C【分析】若位似比是k,则原图形上的点,经过位似变化得到的对应点的坐标是或.【详解】∵以原点O为位似中心,位似比为1:2,将缩小,∴点对应点的坐标为:或.

故选:C.【点睛】本题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标比等于.5、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.6、D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.7、D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故答案选:D.【点睛】本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.8、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.9、B【分析】根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)分别对①②④进行判断,根据相似多边形的面积比等于相似比的平方,周长比等于相似比对③进行判断.【详解】解:①位似图形都相似,故该选项正确;②两个等边三角形不一定是位似图形,故该选项错误;③两个相似多边形的面积比为5:1.则周长的比为,故该选项错误;④两个大小不相等的圆一定是位似图形,故该选项正确.正确的是①和④,有两个,故选:B【点睛】本题考查的是位似图形、相似多边形性质,掌握位似图形的定义、相似多边形的性质定理是解决此题的关键.10、C【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为,∴解得:,即其圆心角度数是故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】设△AEO的面积为a,由平行四边形的性质可知AE∥CD,可证△AEO∽△CDO,相似比为AE:CD=EO:DO=3:4,由相似三角形的性质可求△CDO的面积,由等高的两个三角形面积等于底边之比,可求△ADO的面积,得出的值.【详解】解:设△AEO的面积为a,∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵设△AEO的面积为a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,则S△ACD=S△ADO+S△CDO=,∴故答案为:.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积,等高的三角形面积.12、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可.【详解】解:∵四边形ABCD是矩形,

∴AD=BC=8,∠A=90°,

∵AB=6,

∴BD===10,

∵△BEF是由△ABD旋转得到,

∴△BDF是等腰直角三角形,

∴DF=BD=10,

故答案为10.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型.13、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.14、1【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明OAB∽OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为1.【详解】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴OAB∽OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为:1.【点睛】本题综合考查了相似三角形的判定与性质,平行线的性质,线段的中点坐标,反比例函数的性质,三角形的面积公式等知识,重点掌握反比例函数的性质,难点根据三角形的面积求反比例函数系数的值.15、①②③【分析】由图形先得到a,b,c和b2-4ac正负性,再来观察对称轴和x=-1时y的值,综合得出答案.【详解】解:开口向上的,与轴的交点得出,,,,①对,,,,②对抛物线与轴有两个交点,,③对从图可以看出当时,对应的值大于0,,④错故答案:①②③【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握其函数图象与关系.16、x1=0,x2=1.【分析】利用因式分解法求解可得.【详解】移项得:x2﹣1x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x1=0,x2=1,故答案为:x1=0,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形∆AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵顶点A,B恰好分别落在函数,的图象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴则tan∠ABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.18、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.三、解答题(共66分)19、(1);

(2);(3)

BC∥AD.【分析】(1)将点A(-4,1)代入,求的值;(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点即可;(3)代入B(0,1),C(2,0)求出直线BC的解析式,再与直线AB的解析式作比较,得证BC∥AD.【详解】(1)∵反比例函数的图象经过点A(-4,1),∴(2)

如图,∵

∴∴DH=3∵CH=AE=1∴CD=2∴点D的纵坐标为﹣2,把代入得:∴点D的坐标是(2,﹣2)设:,则∴∴直线AD的解析式是:(3)

由题(2)得B(0,1),C(2,0)设:,则解得∴∵∴BC∥AD【点睛】本题考查了反比例函数的应用以及两直线平行的判定,掌握反比例函数的性质以及两直线平行的判定定理是解题的关键.20、(1),;(2)0<x<2或x>4;(3)△AOB的面积是1.【分析】(1)利用待定系数法先求出反比例函数的解析式,继而求得点B坐标,再结合A、B坐标利用待定系数法即可求出直线解析式;(2)根据图象双曲线在直线上方的部分即可得出答案;(3)过点A作y轴的垂线,垂足为D,过点B作x轴的垂线,垂足为E,两线交于点F,然后用四边形的面积减去三个三角形的面积即可求得答案.【详解】(1)∵点A(2,4)在双曲线上∴∵点B(a,2)也在双曲线,∴,∴a=4(经检验a=4是方程的解),∵点A(2,4)和点B(4,2)在直线上,∴,解得:,∴直线关系式为;(2)观察图象可得,当>时,x的取值范围是:0<x<2或x>4;(3)过点A作y轴的垂线,垂足为D,过点B作x轴的垂线,垂足为E,两线交于点F,则有OD=4,OE=4,∴四边形CDFE是正方形,∴△AOB的面积是:4×4-=1.【点睛】本题考查了反比例函数与一次函数的综合,涉及了待定系数法,利用函数图象求不等式的解集,求三角形的面积等,正确把握相关知识是解题的关键.21、(1)证明见解析;(2)AE=.【分析】(1)由题意连接OE,由角平分线的性质并结合平行线的性质进行分析故可得CD是⊙O的切线;(2)根据题意设r是⊙O的半径,在Rt△CEO中,,进而有OE∥AD可得△CEO∽△CDA,可得比例关系式,代入进行求解即可.【详解】解:(1)证明:连结,∵平分,∴∵,∴,∴,∴∵,∴,∴是圆的切线.(2)设是圆的半径,在中,即.解得.∵,∴∽∴即,解得,∴=.【点睛】本题考查圆相关,熟练掌握并利用圆的切线定理以及相似三角形的性质进行分析是解题的关键.22、2.1.【分析】据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.23、(1)见解析;(2)y=.(0<x<6.4)【分析】(1)可证明△APE和△ACB都是直角三角形,还有一个公共角,从而得出:△AEP∽△ABC;(2)由勾股定理得出BC,再由相似,求出PE=x,,即可得出y与x的函数关系式.【详解】(1)∵PE⊥AB,∴∠APE=90°,又∵∠C=90°,∴∠APE=∠C,又∵∠A=∠A,∴△AEP∽△ABC;(2)在Rt△ABC中,AB=10,AC=8,∴BC=,由(1)可知,△APE∽△ACB∴,又∵AP=x,即,∴PE=x,,∴=.(0<x<6.4)【点睛】本题考查了相似三角形的性质问题,掌握相似三角形的性质以及判定定理是解题的关键.24、(1)证明见解析;(2)1.【分析】(1)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(2)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切线.(2)连接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半径为1【点睛】本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25、(1)b=,c=﹣;(2),;(3)点Q的坐标为:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).【分析】(1)直线与轴交于点,与轴交于点,则点、的坐标分别为:、,则点,抛物线经过点和点,则,将点的坐标代入抛物线表达式并解得:;(2)过点作轴的平行线交于点,设出点P,H的坐标,将△PAB的面积表示成△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论