2022年浙江乐清市育英寄宿学校数学九年级上册期末经典试题含解析_第1页
2022年浙江乐清市育英寄宿学校数学九年级上册期末经典试题含解析_第2页
2022年浙江乐清市育英寄宿学校数学九年级上册期末经典试题含解析_第3页
2022年浙江乐清市育英寄宿学校数学九年级上册期末经典试题含解析_第4页
2022年浙江乐清市育英寄宿学校数学九年级上册期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖2.已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=3.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣14.已知反比例函数y=﹣,下列结论不正确的是()A.函数的图象经过点(﹣1,3) B.当x<0时,y随x的增大而增大C.当x>﹣1时,y>3 D.函数的图象分别位于第二、四象限5.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°6.一元二次方程x2+4x=﹣3用配方法变形正确的是()A.(x﹣2)=1 B.(x+2)=1 C.(x﹣2)=﹣1 D.(x+2)=﹣17.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为08.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A.; B.;C.; D..9.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S正方形ABCD=2,则正方形DEFG的面积为()A. B. C.4 D.10.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”二、填空题(每小题3分,共24分)11.已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A、B两点,连接OA、OB.下列结论;①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论为___.12.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm(结果保留根号).13.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.14.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.15.若是一元二次方程的两个根,则=___________.16.如图,与中,,,,,AD的长为________.17.如图,一辆小车沿着坡度为的斜坡从点A向上行驶了50米到点B处,则此时该小车离水平面的垂直高度为_____________.18.如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则=_____________三、解答题(共66分)19.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.(1)求证:∠FGC=∠AGD;(2)若AD=1.①当AC⊥DG,CG=2时,求sin∠ADG;②当四边形ADCG面积最大时,求CF的长.20.(6分)已知抛物线的对称轴为直线,且经过点(1)求抛物线的表达式;(2)请直接写出时的取值范围.21.(6分)已知:为的直径,,为上一动点(不与、重合).(1)如图1,若平分,连接交于点.①求证:;②若,求的长;(2)如图2,若绕点顺时针旋转得,连接.求证:为的切线.22.(8分)解方程:2(x-3)2=x2-1.23.(8分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?24.(8分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP25.(10分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.26.(10分)在如图中,每个正方形有边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长

1

3

5

7

n(奇数)

黑色小正方形个数

正方形边长

2

4

6

8

n(偶数)

黑色小正方形个数

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.2、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【详解】解:由表格可得,该函数的对称轴是:直线x=,故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.3、C【解析】由图象得,此二次函数过原点(0,0),

把点(0,0)代入函数解析式得a2-1=0,解得a=±1;

又因为此二次函数的开口向上,所以a>0;

所以a=1.

故选C.4、C【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.进行判断即可.【详解】A、反比例函数y=﹣的图象必经过点(﹣1,3),原说法正确,不合题意;B、k=﹣3<0,当x<0,y随x的增大而增大,原说法正确,不符合题意;C、当x>﹣1时,y>3或y<0,原说法错误,符合题意;D、k=﹣3<0,函数的图象分别位于第二、四象限,原说法正确,不符合题意;故选:C.【点睛】本题主要考查反比例函数的性质,掌握反比例函数的图象和性质,是解题的关键.5、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.6、B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故选:B.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.8、B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,故选B.【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.9、B【分析】作BH⊥y轴于H,连接EG交x轴于N,进一步证明△AOD和△ABH都是等腰直角三角形,然后再求出反比例函数解析式为y=,从而进一步求解即可.【详解】作BH⊥y轴于H,连接EG交x轴于N,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S正方形ABCD=2,∴AB=AD=,∴OD=OA=AH=BH=×=1,∴B点坐标为(1,2),把B(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,设DN=a,则EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M点为EF的中点,∴M点的坐标为(,),∵点M在反比例函数y=的图象上,∴×=2,整理得3a2+2a﹣8=0,解得a1=,a2=﹣2(舍去),∴正方形DEFG的面积=2∙EN∙DF=2∙=.故选:B.【点睛】本题主要考查了正方形的性质与反比例函数的综合运用,熟练掌握相关概念是解题关键.10、B【分析】根据事件发生的可能性大小判断相应事件的类型.【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、②③④.【分析】①错误.根据x1<x2<0时,函数y随x的增大而减小可得;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PB•PA,列出方程即可解决问题.【详解】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正确.④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB•PA,∴m2=﹣•(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正确.∴②③④正确,故答案为②③④.【点睛】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题.12、3(﹣1)【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【详解】根据黄金分割点的概念和AC>BC,得:AC=AB=×6=3(﹣1).故答案为:3(﹣1).13、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.14、-1【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.15、1【分析】根据韦达定理可得,,将整理得到,代入即可.【详解】解:∵是一元二次方程的两个根,∴,,∴,故答案为:1.【点睛】本题考查韦达定理,掌握,是解题的关键.16、【分析】先证明△ABC∽△ADB,然后根据相似三角形的判定与性质列式求解即可.【详解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.17、2【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=2.即此时该小车离水平面的垂直高度为2米.故答案为:2.【点睛】考查了解直角三角形的应用−坡度坡角问题,此题的关键是熟悉且会灵活应用公式:tan(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.18、9:4【分析】先证△ADF∽△BEF,可知,根据BE:CE=2:5和平行四边形的性质可得AD:BE的值,由此得解.【详解】解:∵BE:CE=2:5,

∴BE:BC=2:3

,即BC:BE=3:2

,∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,∴AD:BE=3:2,△ADF∽△BEF,∴.故答案为:9:4.【点睛】本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键.三、解答题(共66分)19、(1)证明见解析;(2)①sin∠ADG=;②CF=1.【分析】(1)由垂径定理可得CE=DE,CD⊥AB,由等腰三角形的性质和圆内接四边形的性质可得∠FGC=∠ADC=∠ACD=∠AGD;(2)①如图,设AC与GD交于点M,证△GMC∽△AMD,设CM=x,则DM=3x,在Rt△AMD中,通过勾股定理求出x的值,即可求出AM的长,可求出sin∠ADG的值;②S四边形ADCG=S△ADC+S△ACG,因为点G是上一动点,所以当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,分别证∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【详解】证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如图,设AC与GD交于点M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=,∴AM=1﹣=,∴sin∠ADG===;②S四边形ADCG=S△ADC+S△ACG,∵点G是上一动点,∴当点G在的中点时,△ACG的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=1.【点睛】本题考查的是圆的有关性质、垂径定理、解直角三角形等,熟练掌握圆的有关性质并灵活运用是解题的关键.20、(1);(2)或【分析】(1)利用对称轴方程可确定b=-2,把P点坐标代入二次函数解析式可确定c=-3,即抛物线解析式为;(2)根据抛物线的对称性和P(3,0)为x轴上的点,即可求出另一个点的交点坐标,画图,根据图象即可得出结论;【详解】解:(1)根据题意得,,解得,∴抛物线解析式为;(2)函数对称轴为x=1,而P(3,0)位于x轴上,则设与x轴另一交点坐标Q为(m,0),根据题意得:,解得m=−1,则抛物线与x轴的另一个交点Q坐标为(−1,0),由图可得,时的取值范围为:或;【点睛】本题主要考查了抛物线与x轴的交点,待定系数法求二次函数解析式,掌握抛物线与x轴的交点,待定系数法求二次函数解析式是解题的关键.21、(1)①见解析,②2;(2)见解析【分析】(1)①先根据圆周角定理得出,再得出,再根据角平分线的定义得出,最后根据三角形外角定理即可求证;②取中点,连接,可得是中位线,根据平行线的性质得,然后根据等腰三角形的性质得出,最后再根据中位线的性质得出;(2)上截取,连接,由题意先得出,再得出,然后由旋转性质得、,再根据同角的补角相等得出,然后证的,最后得出即可证明.【详解】解:(1)①证明:为的直径,.,,..平分,.,,.;②解法一:如图,取中点,连接,为的中点,,..,,..;解法二:如图,作,垂足为,平分,,.......在中,.;解法三:如图,作,垂足为,设平分,,.∴∴,即∴解得:∴(2)证明(法一):如图,在上截取,连接.,....由旋转性质得,,.,..(没写不扣分)...为的切线.证法二:如图,延长到,使.由旋转性质得,,..,..(没写不扣分),.,.......为的切线.证法三:作交延长线于点.(余下略)由旋转性质得,,∴,∴.∵∴∴、∴∴∴∴∵为的直径,∴∴∴∴.∴为的切线.【点睛】本题主要考察圆周角定理、角平分线定义、中位线性质、全等三角形的判定及性质等,准确作出辅助线是关键.22、x1=3,x2=1.【解析】试题分析:方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题解析:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=1.考点:解一元二次方程-因式分解法.23、(1);(2)安全.【分析】(1)如图(见解析),先根据方位角的定义可得,再根据平行线的判定与性质可得,然后根据角的和差即可得;(2)设海里,分别在和中,解直角三角形建立等式,求出x的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论