




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.2.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.163.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.4.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}5.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.6.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.407.函数在上为增函数,则的值可以是()A.0 B. C. D.8.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降9.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或510.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.11.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.12.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知△ABC得三边长成公比为2的等比数列,则其最大角的余弦值为_____.14.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是________.15.已知,若,则________.16.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.19.(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.①求的数学期望和方差;②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;②若,则,,.20.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.21.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.22.(10分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.2.D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.3.B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.4.C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.5.C【解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题6.C【解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.7.D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.8.D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.9.B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.10.C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.11.D【解析】
根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.12.C【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.-【解析】试题分析:根据题意设三角形的三边长分别设为为a,2a,2a,∵2a>2a>a,∴2a所对的角为最大角,设为θ,则根据余弦定理得考点:余弦定理及等比数列的定义.14.①③【解析】
利用奇函数和,得出函数的周期为,由图可直接判断①;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断②的正误;采用换元法,结合图象即可得解,可判断③的正误.综合可得出结论.【详解】因为函数是奇函数,所以,又,所以,即,所以,函数的周期为.对于①,由于函数是上的奇函数,所以,,故①正确;对于②,,令,可得,得,所以,函数在区间上的零点为和.因为函数的周期为,所以函数在内有个零点,分别是、、、、,故②错误;对于③,令,则需求的解集,由图象可知,,所以,故③正确.故答案为:①③.【点睛】本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题.15.1【解析】
由题意先求得的值,可得,再令,可得结论.【详解】已知,,,,令,可得,故答案为:1.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.16.【解析】
依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解:正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为:【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18.(1)有的把握认为喜欢物理与性别有关;(2)分布列见解析,.【解析】
(1)根据题目所给信息,列出列联表,计算的观测值,对照临界值表可得出结论;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,确定的所有取值为、、、、.根据计数原理计算出每个所对应的概率,列出分布列计算期望即可.【详解】(1)根据所给条件得列联表如下:男女合计喜欢物理不喜欢物理合计,所以有的把握认为喜欢物理与性别有关;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,由题意可知,的所有可能取值为、、、、.,,,,.所以的分布列为:所以.【点睛】本题考查了独立性检验、离散型随机变量的概率分布列.离散型随机变量的期望.属于中等题.19.(1)(2)①,,②72【解析】
(1)将每组数据的组中值乘以对应的频率,然后再将结果相加即可得到亮灯时长的平均数,将此平均数除以(个小时),即可得到的估计值;(2)①利用二项分布的均值与方差的计算公式进行求解;②先根据条件计算出的取值范围,然后根据并结合正态分布概率的对称性,求解出在满足取值范围下对应的概率.【详解】(1)平均时间为(分钟)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳时间长度为72分钟.【点睛】本题考查根据频数分布表求解平均数、几何概型(长度模型)、二项分布的均值与方差、正态分布的概率计算,属于综合性问题,难度一般.(1)如果,则;(2)计算正态分布中的概率,一定要活用正态分布图象的对称性对应概率的对称性.20.(1)(2)见解析,【解析】
(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本事件总数为,这两人来自同一小组取法共有,由此可求出所求的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,而甲、丙两个小组学生分别有4人和2人,所以抽取的两人中是甲组的学生的人数的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【详解】(1)由题设易得,问卷调查从四个小组中抽取的人数分别为4,3,2,3(人),从参加问卷调查的12名学生中随机抽取两名的取法共有(种),抽取的两名学生来自同一小组的取法共有(种),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台软件定义网络SDN安全防护策略研究报告
- 河南省洛阳市孟津区第二区直中学2025-2026学年上学期九年级物理第一次月考试题(含答案)
- 2024-2025学年山西省忻州市岢岚县部分学校九年级(上)期末数学试卷(含答案)
- 应对焦虑的翻转课件樊登
- 2025年抖音电商滑雪运动用品市场趋势洞察分析报告
- 尾矿库安全管理培训课件
- 输液港宣教课件
- 小鸭子舞蹈创编课件
- 电力线路施工终止及设备回收处理协议
- 跨区域个人住房贷款合同管辖规定
- 人教版四年级上册语文第一单元测试题(含答案)
- 微生物室臭氧灭菌验证方案与报告
- 供应商尽职调查模板
- 2024年中国电信四川公司招聘笔试参考题库含答案解析
- 有效管理的5大兵法学习分享-20.2.4
- 2022年湖北统招专升本英语真题带答案
- :广西普通本科高校、高等职业学校国家助学金申请表(电子版和打印纸质版)
- 洪恩识字识字卡(001-100)可直接打印剪裁
- GB/T 16400-2023绝热用硅酸铝棉及其制品
- 关于网络强国的重要思想专题PPT
- 子宫肌瘤手术治疗单病种质控查检表
评论
0/150
提交评论