




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一张圆心角为的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知,则扇形纸板和圆形纸板的半径之比是()A. B. C. D.2.如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A. B. C. D.3.若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角为()A.30 B.45 C.60 D.904.二次函数的顶点坐标为()A. B. C. D.5.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.1506.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形7.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣18.下列命题中,真命题是()A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似9.下列说法正确的是()A.等弧所对的圆心角相等B.三角形的外心到这个三角形的三边距离相等C.经过三点可以作一个圆D.相等的圆心角所对的弧相等10.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.圆锥的侧面展开图的圆心角是120°,其底面圆的半径为2cm,则其侧面积为_____.12.已知,且,则的值为__________.13.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.14.如图,在中,点分别是边上的点,,则的长为________.15.线段,的比例中项是______.16.正八边形的每个外角的度数和是_____.17.若是方程的一个根,则代数式的值是______.18.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.三、解答题(共66分)19.(10分)我市要选拔一名教师参加省级评优课比赛:经笔试、面试,结果小潘和小丁并列第一,评委会决定通过摸球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个蓝球,小潘先取出一个球,记住颜色后放回,然后小丁再取出一个球.若两次取出的球都是红球,则小潘胜出;若两次取出的球是一红一蓝,则小丁胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.20.(6分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.21.(6分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元,每增加件,当天平均每件利润减少元.设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_______________________乙_____________若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.22.(8分)已知反比例函数,(k为常数,).(1)若点在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.23.(8分)空间任意选定一点,以点为端点作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,轴方向表示的量称为几何体码放的层数;如图是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作(1,2,6),如图的几何体码放了排列层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组(3,2,4)所对应的码放的几何体是_____;(2)图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(___,____,____),组成这个几何体的单位长方体的个数为____个;(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用表示)(4)当时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(___,___,___),此时求出的这个几何体表面积的大小为________.(缝隙不计)24.(8分)如图,P是平面直角坐标系中第四象限内一点,过点P作PA⊥x轴于点A,以AP为斜边在右侧作等腰Rt△APQ,已知直角顶点Q的纵坐标为﹣2,连结OQ交AP于B,BQ=2OB.(1)求点P的坐标;(2)连结OP,求△OPQ的面积与△OAQ的面积之比.25.(10分)如图,四边形是正方形,连接,将绕点逆时针旋转得,连接,为的中点,连接,.(1)如图1,当时,求证:;(2)如图2,当时,(1)还成立吗?请说明理由.26.(10分)在矩形中,,,点是边上一点,交于点,点在射线上,且是和的比例中项.(1)如图1,求证:;(2)如图2,当点在线段之间,联结,且与互相垂直,求的长;(3)联结,如果与以点、、为顶点所组成的三角形相似,求的长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】分别求出扇形和圆的半径,即可求出比值.【详解】如图,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圆形纸板的半径比是:=故选:A.【点睛】本题考查了正方形性质、圆内接四边形性质;解此题的关键是求出扇形和圆的半径,题目比较好,难度适中.2、B【分析】首先连接OC,由CE是切线,可得,由圆周角定理,可得,继而求得的度数,则可求得的值.【详解】解:连接OC,
是切线,
,
即,
,、分别是所对的圆心角、圆周角,
,
,
.故选:B.【点睛】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.根据切线的性质连半径是解题的关键.3、A【分析】将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的长度与矩形相等的一条边上的高为矩形的一半,即AB=2AE.【详解】解:将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,平行四边形ABCD是原矩形变化而成,∴FG=BC,FH=2AE.又∵HF=AB,∴AB=2AE,在Rt△ABE中,AB=2AE,∠B=30°.故选:A.【点睛】本题考查了矩形各内角为90的性质,平行四边形面积的计算方法,特殊角的三角函数,本题中利用特殊角的正弦函数是解题的关键.4、D【分析】已知二次函数y=2x2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】∵y=2x2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D.【点睛】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y=a(x−k)2+h的顶点坐标为(k,h),5、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B.【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数样本容量.6、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.7、B【解析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.8、D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】所有正方形都相似,故D符合题意;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、A【解析】试题分析:A.等弧所对的圆心角相等,所以A选项正确;B.三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C.经过不共线的三点可以作一个圆,所以C选项错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选C.考点:1.确定圆的条件;2.圆心角、弧、弦的关系;3.三角形的外接圆与外心.10、B【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=,∴∠BAE30°,故①错误;∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,在△BAE和△CEF中,,
∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、12πcm【分析】先根据底面半径求出底面周长,即为扇形的弧长,再设出扇形的半径,根据扇形的弧长公式,确定扇形的半径;最后用扇形的面积公式求解即可.【详解】解:∵底面圆的半径为2cm,∴底面周长为4πcm,∴侧面展开扇形的弧长为4πcm,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴=4π,解得:r=6,∴侧面积为×4π×6=12πcm,故答案为:12πcm.【点睛】本题考查了圆锥的表面积、扇形的面积以及弧长公式,解答的关键在于对基础知识的牢固掌握和灵活运用.12、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.13、1.【详解】解:设圆锥的底面圆半径为r,根据题意得1πr=,解得r=1,即圆锥的底面圆半径为1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.14、1【分析】根据平行线分线段成比例定理即可解决问题.【详解】∵,,∴,,则,,∴,∵,∴.故答案为:1.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.15、【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【详解】解:设线段c是线段a、b的比例中项,∴c2=ab,∵a=2,b=3,∴c=故答案为:【点睛】本题主要考查了线段的比例中项的定义,注意线段不能为负.16、360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.17、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.18、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.三、解答题(共66分)19、这个规则对双方是公平的【分析】根据树状图列出共有9种可能,两次都是红球和一红一蓝的概率是否相同,相同即公平,不同即不公平,即可判断出.【详解】解:树状图或列表对由此可知,共有9种等可能的结果,其中两红球及一红一蓝各有4种结果∵P(都是红球)=,P(1红1蓝)=∴P(都是红球)=P(1红1蓝)∴这个规则对双方是公平的【点睛】此题主要考查了用树状图求概率的方法,将实际生活中转化为数学模式是解题的关键.20、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.21、(1)65-x,130-2x,130-2x;(2)每件乙产品可获得的利润是元.【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解.【详解】解:由己知,每天安排人生产乙产品时,生产甲产品的有人,共生产甲产品件.在乙每件元获利的基础上,增加人,利润减少元每件,则乙产品的每件利润为.故答案为:由题意解得(不合题意,舍去)(元)答:每件乙产品可获得的利润是元【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列方程.22、(1)k=9;(2)k<3【分析】(1)根据反比例函数图象上点的坐标特征得到k-3=2×3,然后解方程即可;
(2)根据反比例函数的性质得,然后解不等式即可;【详解】解:(1)∵点在这个函数的图象上,,解得;(2)∵在函数图象的每一支上,随的增大而增大,,得.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.23、(1)B;(2);;;;(3);(4);;;.【分析】(1)根据有序数组中x、y和z表示的实际意义即可得出结论;(2)根据三视图的定义和有序数组中x、y和z表示的实际意义即可得出结论;(3)根据题意,分别从不同方向找出面积为、和的长方形,用含x、y、z的式子表示出它们的个数,然后根据表面积公式计算即可;(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分类讨论,根据(3)的公式分别求出在每一种情况下的最小值,最后通过比较找出最小的即可得出结论.【详解】解:(1)有序数组(3,2,4)表示3排2列4层,故B选项符合故选:B.(2)由左视图和俯视图可知:该几何体共码放了2排,由主视图和俯视图可知:该几何体共码放了3列,由主视图和左视图可知:该几何体共码放了2层,故这种码放方式的有序数组为(,,);组成这个几何体的单位长方体的个数为2×3×2=;故答案为:;;;;(3)根据题意可知:从几何体的前面和后面看:面积为的长方形共有2yz个,从几何体的左面和右面看:面积为的长方形共有2xz个,从几何体的上面和下面看:面积为的长方形共有2xy个,∴几何体表面积(4)由题意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3①当xyz=1×1×12时∵根据(3)中公式可知,此时当x=1,y=1,z=12时,几何体表面积最小此时;②当xyz=1×2×6时∵根据(3)中公式可知,此时当x=1,y=2,z=6时,几何体表面积最小此时;③当xyz=1×3×4时∵根据(3)中公式可知,此时当x=1,y=3,z=4时,几何体表面积最小此时;④当xyz=2×2×3时∵根据(3)中公式可知,此时当x=2,y=2,z=3时,几何体表面积最小此时;∵∴这个有序数组为(,,),最小面积为.故答案为:;;;1.【点睛】此题考查的是新定义类问题,读懂材料、并归纳总结公式和掌握三视图的概念和表面积的求法和分类讨论的数学思想是解决此题的关键.24、(1)点P的坐标(1,﹣4);(2)△OPQ的面积与△OAQ的面积之比为1.【分析】(1)过Q作QC⊥x轴于C,先求得AC=QC=2、AQ=2、AP=4,然后再由AB∥CQ,运营平行线等分线段定理求得OA的长,最后结合AP=4即可解答;(2)先说明△OAB∽△OCQ,再根据相似三角形的性质求得AB和PB的长,然后再求出△OPQ和△OAQ的面积,最后作比即可.【详解】解:(1)过Q作QC⊥x轴于C,∵△APQ是等腰直角三角形,∴∠PAQ=∠CAQ=41°,∴AC=QC=2,AQ=2,AP=4,∵AB∥CQ,∴,∴OA=AC=1,∴点P的坐标(1,﹣4);(2)∵AB∥CQ,∴△OAB∽△OCQ,∴,∴AB=CQ=,∴PB=,∴S△OAQ=OA•CQ=×1×2=1,S△OPQ=PB•OA+PB•AC=1,∴△OPQ的面积与△OAQ的面积之比=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑楼体防护网安装工程技术考核试卷
- 2023-2024学年广东省名校联盟高一下学期期中质量检测语文试题(解析版)
- 探索光的奥秘
- 江苏名校2024-2025学年高考化学试题模拟题及解析(全国Ⅰ卷)含解析
- 天津机电职业技术学院《材料成型原理与工艺》2023-2024学年第二学期期末试卷
- 苏州大学应用技术学院《生物反应工程实验》2023-2024学年第二学期期末试卷
- 四川省成都市龙泉驿区达标名校2025届初三第6次月考数学试题含解析
- 辽宁工业大学《藏族文化概论》2023-2024学年第一学期期末试卷
- 四川铁道职业学院《跨文化交际(日)》2023-2024学年第一学期期末试卷
- 2025年小学数学期末考试试卷及答案
- hellp综合征护理课件
- 心理健康教育课件《如何面对考试焦虑》
- 污水源热泵方案
- 《唐诗中的春夏秋冬》五年级下册诗词鉴赏一等奖课件
- 25题内控合规岗位常见面试问题含HR问题考察点及参考回答
- 专业合作社财务报表EXCEL三表
- 车辆租赁合同(无中介-非租车公司)(标准版)
- 物业业主见面会方案
- 油气集输管线工程施工组织设计方案
- 北京市初中学业水平考试体育与健康知识模拟练习题(含答案)
- 韩国语topik单词-初级+中级
评论
0/150
提交评论