2023届福建省泉州市洛江区北片区数学九年级上册期末教学质量检测试题含解析_第1页
2023届福建省泉州市洛江区北片区数学九年级上册期末教学质量检测试题含解析_第2页
2023届福建省泉州市洛江区北片区数学九年级上册期末教学质量检测试题含解析_第3页
2023届福建省泉州市洛江区北片区数学九年级上册期末教学质量检测试题含解析_第4页
2023届福建省泉州市洛江区北片区数学九年级上册期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定2.在中,,,若,则的长为()A. B. C. D.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点4.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为()A. B. C. D.5.若一个圆锥的底面积为,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为()A. B. C. D.6.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为()A.m>1 B.m≥1 C.m<1 D.m≤17.如图,在中,已知点在上,点在上,,,下列结论中正确的是()A. B. C. D.8.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤9.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为()x(单位:m)y(单位:m)3.05A. B. C. D.10.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF=CE=则关于的函数图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.12.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.13.如图,在菱形ABCD中,∠B=60º,E是CD上一点,将△ADE折叠,折痕为AE,点D的对应点为点D’,AD’与BC交于点F,若F为BC中点,则∠AED=______.14.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.15.方程的一次项系数是________.16.经过点的反比例函数的解析式为__________.17.计算________________.18.已知关于x的方程的一个根为2,则这个方程的另一个根是▲.三、解答题(共66分)19.(10分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.20.(6分)如图3,小明用一张边长为的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为的正方形,再折成如图3所示的无盖纸盒,记它的容积为.(3)关于的函数表达式是__________,自变量的取值范围是___________.(3)为探究随的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:33.533.533.53333.533.53.53②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过,估计正方形边长的取值范围.(保留一位小数)21.(6分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)22.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?23.(8分)如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.24.(8分)如图,某小区规划在一个长,宽的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的面积都为.应如何设计道路的宽度?25.(10分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.(1)(观察猜想)在图①中,;在图②中,(用含的代数式表示)(2)(类比探究)如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;(3)(问题解决)若,,,求点到的距离.26.(10分)某校3男2女共5名学生参加黄石市教育局举办的“我爱黄石”演讲比赛.(1)若从5名学生中任意抽取3名,共有多少种不同的抽法,列出所有可能情形;(2)若抽取的3名学生中,某男生抽中,且必有1女生的概率是多少?

参考答案一、选择题(每小题3分,共30分)1、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【点睛】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.2、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,∵cos53°=,∴AB=故选A【点睛】此题考查解直角三角形的三角函数解,难度不大3、D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等.4、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.5、C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】解:∵圆锥的底面积为4πcm2,

∴圆锥的底面半径为2cm,

∴底面周长为4π,

圆锥的高为4cm,

∴由勾股定理得圆锥的母线长为6cm,

设侧面展开图的圆心角是n°,

根据题意得:=4π,

解得:n=1.

故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6、C【分析】抛物线与轴有两个交点,则,从而求出的取值范围.【详解】解:∵抛物线与轴有两个交点∴∴∴故选:C【点睛】本题考查了抛物线与轴的交点问题,注:①抛物线与轴有两个交点,则;②抛物线与轴无交点,则;③抛物线与轴有一个交点,则.7、B【分析】由,得∠CMN=∠CNM,从而得∠AMB=∠∠ANC,结合,即可得到结论.【详解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故选B.【点睛】本题主要考查相似三角形的判定定理,掌握“对应边成比例,夹角相等的两个三角形相似”是解题的关键.8、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,

∵∠GEF=∠PGC=90°,

∴∠GEF+∠PGC=180°,

∴BF∥PG

∵BF=PG,

∴四边形BPGF是菱形,

∴BP∥GF,GF=BP=9

∴∠GFE=∠ABE,

∴△GEF∽△EAB,

∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.9、C【分析】用待定系数法可求二次函数的表达式,从而可得出答案.【详解】将代入中得解得∴∵∴当时,故选C【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.10、C【分析】由题意得∠B=∠C=45°,∠G=∠EAF=45°,推出△ACE∽△ABF,得到∠AEC=∠BAF,根据相似三角形的性质得到

,于是得到结论.【详解】解:如图:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y,∴,即xy=2,(1<x<2).故选:C.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ABF∽△ACE是解题的关键.二、填空题(每小题3分,共24分)11、15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=•2π•3•5=15π.

故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12、-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.13、75º【分析】如图(见解析),连接AC,易证是等边三角形,从而可得,又由可得,再根据折叠的性质得,最后在中利用三角形的内角和定理即可得.【详解】如图,连接AC在菱形ABCD中,是等边三角形F为BC中点(等腰三角形三线合一的性质),即(两直线平行,同旁内角互补)又由折叠的性质得:在中,由三角形的内角和定理得:故答案为:.【点睛】本题是一道较好的综合题,考查了菱形的性质、等边三角形的性质、平行线的性质、图形折叠的性质、三角形的内角和定理,利用三线合一的性质证出是解题关键.14、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=的图象上,

∴k=2,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.15、-3【解析】对于一元二次方程的一般形式:,其中叫做二次项,叫做一次项,为常数项,进而直接得出答案.【详解】方程的一次项是,∴一次项系数是:故答案是:.【点睛】本题主要考查了一元二次方程的一般形式,正确得出一次项系数是解题关键.16、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解.【详解】设反比例函数解析式为,则,解得:,∴此函数的解析式为.故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单.17、【分析】根据负整数指数幂的计算法则及立方根的定义进行计算即可.【详解】解:原式=1-8=-1.故答案为:-1.【点睛】本题考查实数的运算,属于常考基础题,明确负整数指数幂的计算法则及立方根的定义是解题的关键.18、-1.【解析】∵方程的一个根为2,设另一个为a,∴2a=-6,解得:a=-1.三、解答题(共66分)19、(1);(2).【分析】(1)将点代入中即可求出k的值,求得反比例函数的解析式;(2)根据题意列出方程组,根据点在第一象限解出方程组即可.【详解】(1)一次函数的图象经过点反比例函数的解析式为(2)由已知可得方程组,解得或经检验,当或时,,所以方程组的解为或∵点在第一象限∴【点睛】本题考查了一次函数和反比例函数的问题,掌握一次函数和反比例函数的性质、解二元一次方程组的方法是解题的关键.20、(3),;(3)①36,8;②见解析;③见解析;(3)(或)【分析】(3)先根据已知条件用含x的式子表示出长方体底面边长,再乘以长方体的高即可;

(3)①根据(3)得出的关系式求当x=3、3时对应的y的值补充表格;②③根据描点法画出函数图像即可;(3)根据图像知y=33时,x的值由两个,再估算x的值,再根据图像由y>33,得出x的取值范围即可.【详解】解:(3)由题意可得,无盖纸盒的底面是一个正方形,且边长为(6-3x)cm,∴,x的取值范围为:3<6-3x<6,解得.故答案为:;;(3)①当x=3时,y=4-34+36=36;当x=3时,y=4×8-34×4+36×3=8;故答案为:36,8;②③如图所示:(3)由图像可知,当y=33时,3<x<3,或3<x<3,①当3<x<3时,当x=3.4时,y=33.836,当x=3.5时,y=33.5,∴当y=33时,x≈3.5(或3.4);②当3<x<3时,当x=3.6时,y=33.544,当x=3.7时,y=33.493,∴当y=33时,x≈3.6(或3.7),∴当y>33时,x的取值范围是(或).【点睛】本题主要考查列函数关系式、函数图像的画法、根的估算以及函数的性质,解题的关键是掌握基本概念和性质.21、(1)直三棱柱;(2)【解析】试题分析:(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长×高+2个底面积.试题解析:(1)符合这个零件的几何体是直三棱柱;(2)如图,△ABC是正三角形,CD⊥AB,CD=2,,在Rt△ADC中,,解得AC=4,∴S表面积=4×2×3+2××4×2=(24+8)(cm2).22、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.23、详见解析.【分析】△DEH与△ABC均为直角三角形,可利用等角的余角相等再求出一组锐角对应相等即可.【详解】证明:∵DE⊥AB,DF⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°而∠BHF=∠DHE,∴∠D=∠B,又∵∠DEH=∠C=90°,∴△DEH∽△BCA.【点睛】此题考查的是相似三角形的判定和互余的性质,掌握有两组对应角相等的两个三角形相似和等角的余角相等是解决此题的关键.24、道路的宽度应设计为1m.【分析】设道路的宽度为m,横、竖道路分别有2条,所以草坪的宽为:(20-2x)m,长为:(30-2x)m,草坪的总面积为56×9,根据长方形的面积公式即可得出结果.【详解】解:设道路的宽度为m.由题意得:化简得:解得:,(舍)答:道路的宽度应设计为1m.【点睛】本题考查的是一元二次方程的实际应用,根据题目条件进行设未知数,列出方程并且求解是解题的关键.25、(1);;(2),证明见解析;(3)点到的距离为或.【分析】(1)在图①中由旋转可知,由三角形内角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因为,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在图②中,由旋转可知,得到∠OBP+OAP=180°,通过四边形OAPB的内角和为360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋转可知≌,,,,因为,得到,即可得证;(3)当点在上方时,过点作于点,由条件可求得PA,再由可求出OH;当点/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论