版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个2.不等式组的解集是()A. B. C. D.3.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m4.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ab<0 B.a+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>05.抛物线的图像与坐标轴的交点个数是()A.无交点 B.1个 C.2个 D.3个6.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A. B.6 C. D.97.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为A. B. C. D.8.如图,平行四边形ABCD中,E是BC延长线上一点,连结AE交CD于F,则图中相似的三角形共有()A.1对 B.2对C.3对 D.4对9.如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,且DE将△ABC分成面积相等的两部分,那么的值为()A.﹣1 B.+1 C.1 D.10.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣211.如图,是的直径,点在上,,则的度数为()A. B. C. D.12.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>2二、填空题(每题4分,共24分)13.在中,已知cm,cm,P是BC的中点,以点P为圆心,3cm为半径画☉P,则点A与☉P的位置关系是____________.14.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是_____.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.16.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.17.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是、,且,则队员身高比较整齐的球队是_____.18.在函数中,自变量的取值范围是______.三、解答题(共78分)19.(8分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.(8分)如图,已知点是坐标原点,两点的坐标分别为,.(1)以点为位似中心在轴的左侧将放大到原图的2倍(即新图与原图的相似比为2),画出对应的;(2)若内部一点的坐标为,则点对应点的坐标是______;(3)求出变化后的面积______.21.(8分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.22.(10分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.23.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?24.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.25.(12分)如图,为了测量上坡上一棵树的高度,小明在点利用测角仪测得树顶的仰角为,然后他沿着正对树的方向前进到达点处,此时测得树顶和树底的仰角分别是和.设,且垂足为.求树的高度(结果精确到,).26.计算:2cos45°tan30°cos30°+sin260°.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.2、D【分析】根据不等式的性质解不等式组即可.【详解】解:化简可得:因此可得故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.3、A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A、B分别是CD、CE的中点,DE=18m,∴AB=DE=9m,故选:A.【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.4、D【解析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在y轴的左侧得到b>0,则可对A选项进行判断;利用x=1时,y=2得到a+b=2﹣c,则a+b+2c﹣2=c<0,于是可对B选项进行判断;利用抛物线与x轴有2个交点可对C选项进行判断;利用﹣1<﹣<0可对D选项进行判断.【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,即b>0,∴ab>0,故A选项错误;∵抛物线与y轴的交点在x轴下方,∴c<0,∵x=1时,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B选项错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,故C选项错误;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D选项正确.故选:D.【点睛】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.5、B【分析】已知二次函数的解析式,令x=0,则y=1,故与y轴有一个交点,令y=0,则x无解,故与x轴无交点,题目求的是与坐标轴的交点个数,故得出答案.【详解】解:∵∴令x=0,则y=1,故与y轴有一个交点∵令y=0,则x无解∴与x轴无交点∴与坐标轴的交点个数为1个故选B.【点睛】本题主要考查二次函数与坐标轴的交点,熟练二次函数与x轴和y轴的交点的求法以及仔细审题是解决本题的关键.6、A【分析】由点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,可得到m、n之间的关系,过点A、B分别作x轴、y轴的平行线,构造直角三角形,可求出直角三角形的直角边的长,由平移可得直角三角形的直角顶点在直线l上,进而将问题转化为求△ADB的面积.【详解】解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=xB﹣xA=n﹣m=3,AD=yA﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB=S△ADB=AD•BD=,故选:A.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题关键是熟练掌握计算法则.7、B【详解】解:∵M,N分别是边AB,AC的中点,∴MN是△ABC的中位线,∴MN∥BC,且MN=BC,∴△AMN∽△ABC,∴,∴△AMN的面积与四边形MBCN的面积比为1:1.故选B.【点睛】本题考查了相似三角形的判定与性质,解答本题的关键是得出MN是△ABC的中位线,判断△AMN∽△ABC,要掌握相似三角形的面积比等于相似比平方.8、C【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【详解】在平行四边形ABCD中,AB∥CD,BC∥AD,所以,△ABE∽△FCE,△FCE∽△FDA,△ADF∽△EBA,共3对.故选C.【点睛】本题考查了相似三角形的判定,利用平行四边形的对边互相平行的性质,再结合“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”即可解题9、D【分析】由条件DE∥BC,可得△ADE∽△ABC,又由DE将△ABC分成面积相等的两部分,可得S△ADE:S△ABC=1:1,根据相似三角形面积之比等于相似比的平方,可得答案.【详解】如图所示:∵DE∥BC,∴△ADE∽△ABC.设DE:BC=1:x,则由相似三角形的性质可得:S△ADE:S△ABC=1:x1.又∵DE将△ABC分成面积相等的两部分,∴x1=1,∴x,即.故选:D.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.10、B【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=﹣x2+1向右平移2个单位长度所得的抛物线的解析式为:y=﹣(x﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=﹣(x﹣2)2﹣2.故选:B.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11、B【分析】连接AC,根据圆周角定理,分别求出∠ACB=90,∠ACD=20,即可求∠BCD的度数.【详解】连接AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故选:B.【点睛】本题考查的是圆周角定理:①直径所对的圆周角为直角;②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12、B【解析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x﹣2≠1,∴x≠2,故选B.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.二、填空题(每题4分,共24分)13、点A在圆P内【分析】求出AP的长,然后根据点与圆的位置关系判断即可.【详解】∵AB=AC,P是BC的中点,∴AP⊥BC,BP=3cm,∴AP=cm,∵,∴点A在圆P内.故答案为:点A在圆P内.【点睛】本题考查了等腰三角形的性质,勾股定理,点与圆的位置关系,关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14、(﹣3,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即可得答案.【详解】点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).【点睛】本题主要考查平面直角坐标系中,关于原点的两个点的坐标变化规律,掌握两个点关于原点对称时,它们的坐标符号相反,是解题的关键.15、1+【分析】利用二次函数图象上点的坐标特征可求出点A、B、D的坐标,进而可得出OD、OA、OB,根据圆的性质可得出OM的长度,在Rt△COM中,利用勾股定理可求出CO的长度,再根据CD=CO+OD即可求出结论.【详解】当x=0时,y=(x﹣1)2﹣4=﹣1,∴点D的坐标为(0,﹣1),∴OD=1;当y=0时,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴点A的坐标为(﹣1,0),点B的坐标为(0,1),∴AB=4,OA=1,OB=1.连接CM,则CM=AB=2,OM=1,如图所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案为1+.【点睛】先根据二次函数与一元二次方程的关系,勾股定理,熟练掌握二次函数与一元二次方程的关系是解答本题的关键.16、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.17、乙【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量18、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x+1≠0,解得x≠−1.故答案为x≠−1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共78分)19、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.20、(1)见解析;(2);(3)10【分析】(1)把B、C的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC的面积,然后利用相似的性质把△OBC的面积乘以4得到△OBꞌCꞌ的面积.【详解】解:(1)如图,为所作;(2)点对应点的坐标是;(3)的面积.【点睛】本题考查了作图-位似变换:熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.21、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.22、(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表见解析.【解析】直接利用概率公式求解可得;
抽取两人接受采访,故利用列表法可得所有等可能结果.【详解】解:(1)8名学生中至少有三类垃圾投放正确有5人,故至少有三类垃圾投放正确的概率为;(2)列表如下:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比.23、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川甘孜州大学生乡村医生专项计划招聘考试真题2024
- 长郡知识竞赛培训课件
- 安防系统售后服务方案及措施
- 2024年省燃气经营企业从业人员考试(压缩天然气场站工)经典试题及答案四
- 专题11 强调句的用法 (学生版)-2025年新高一英语暑假衔接讲练 (人教版)
- 2025年煤矿企业主要负责人安管能力考试模拟题及答案
- 难点详解人教版八年级物理上册第6章质量与密度-密度综合练习试题(含答案及解析)
- 2025年山西省煤矿安全生产管理人员安全生产知识和管理能力考试全真模拟试题及答案
- 2025年道路运输企业主要负责人和安全生产管理人员考试(主要负责人)考前模拟试题及答案
- 2025年煤矿企业主要负责人安全生产知识和管理能力考试练习题及答案
- 2024年太原武宿机场航空产业集团招聘笔试冲刺题(带答案解析)
- 现代礼仪与沟通(大学生礼仪沟通课程)全套教学课件
- 严重精神障碍患者家属护理教育
- 坚持立足中国又面向世界讲解
- 《昆虫的美食》课件
- 制程工序能力分析报告
- TRIZ试题库资料整理
- 双室平衡容器原理
- 焊接热源及其热作用
- 等腰三角形的性质市公开课金奖市赛课一等奖课件
- 生产车间行为规范
评论
0/150
提交评论