2022-2023学年八年级上学期期中考前必刷卷二_第1页
2022-2023学年八年级上学期期中考前必刷卷二_第2页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八年级上学期期中考前必刷卷02数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2020·北京市朝阳区芳草地国际学校富力分校八年级期中)“致中和,天地位焉,万物育焉.”中国古人把和谐平衡的精神之美,演变成了一种对称美.从古至今,人们将对称元素赋予建筑、器物、绘画、饰品等事物上,使对称之美惊艳了千年的时光.在下列我国建筑简图中,不是轴对称图形的是(

)A. B. C. D.2.(2022·四川·富顺第二中学校八年级阶段练习)下列生活实物中,没有应用到三角形的稳定性的是()A. B. C. D.3.(2022·广东·东莞市松山湖莞美学校八年级阶段练习)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,则CD的长为()A.5cm B.cm C.cm D.cm4.(2022·全国·八年级课时练习)如图,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则BC的长为(

)A.8 B.7 C.6 D.55.(2022·山东·万杰朝阳学校七年级期中)如图,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.若∠A=40°,则∠ABX+∠ACX=(

)A.25° B.30° C.45° D.50°6.(2022·山东·滨州市滨城区教学研究室八年级期中)给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,AC=EF,∠B=∠E;③∠B=∠E,AB=DF,∠C=∠F;④AB=DE,AC=DF,.其中,能确定△ABC和△DEF全等的条件共有(

)A.1组 B.2组 C.3组 D.4组7.(2021·广西北海·八年级期中)如图,在中,,点D是底边BC上异于AC中点的一个点,,.运用以上条件(不添加辅助线)可以说明下列结论错误的是(

)A. B. C. D.8.(2022·河南·郑州经开区外国语女子中学八年级期末)如图,在中,以为圆心,适当长为半径作弧,分别交、于点、,再分别以、为圆心,相同长为半径作弧,分别交、于点、,连接、,交于点,连接并延长交于点,则线段是(

)A.的高 B.的中线C.的角平分线 D.以上都不对9.(2019·安徽合肥·八年级期中)如图,中,BP平分∠ABC,AP⊥BP于P,连接PC,若的面积为3.5cm2,的面积为4.5cm2,则的面积为(

).A.0.25cm2 B.0.5cm2 C.1cm2 D.1.5cm210.(2022·黑龙江·哈尔滨工业大学附属中学校七年级期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°∠A,②∠EBO∠AEF,③∠DOC+∠OCB=90°,④设OD=m,AE+AF=n,则S△AEF.其中正确的结论有()A.1个 B.2个 C.3个 D.4个11.(2022·山东威海·七年级期末)如图,四边形,,边的中垂线分别交,于点,,且若,,则的长为(

)A. B. C. D.12.(2022·四川绵阳·八年级期末)如图,在△ABC中,∠ABC和∠ACB的角平分线交于点O,AD经过点O与BC交于点D,以AD为边向两侧作等边△ADE和等边△ADF,分别和AB,AC交于点G,H,连接GH.若∠BOC=120°,AB=a,AC=b,AD=c.则下列结论中正确的个数有(

)①∠BAC=60°;

②△AGH是等边三角形;③AD与GH互相垂直平分;

④.A.1个 B.2个 C.3个 D.4个13.(2021·浙江·宁波市兴宁中学九年级期中)如图,点P,Q,R分别在等边△ABC的三边上,且AP=BQ=CR,过点P,Q,R分别作BC,CA,AB边的垂线,得到△DEF、若要求△DEF的面积,则只需知道(

)A.EP的长 B.EF的长 C.AP的长 D.DP的长14.(2021·山东·梁山县第二中学八年级阶段练习)如图,在长方形ABCD中,.延长BC到E,使,连接动点P从点B出发,以每秒2个单位的速度沿向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,则t的值为()A. B. C.或 D.或第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)在一个三角形中,三个内角之比为::,则这个三角形是______三角形.16.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)一个正多边形的一个内角是它外角的4倍,这个正多边形的内角和为______度.17.(2022·黑龙江·大庆市庆新中学八年级期末)如图,是我们七上学过的利用尺规“作一个角等于已知角”的过程,爱思考的小明一直不知道这样作出的角和已知角为何相等,在学习了三角形全等的证明之后,终于解开了谜团,原来只要证明△DOC≌△D'O'C'就能得出∠O=∠O',那么小明证明△DOC≌△D'O'C'的依据是___________.18.(2021·浙江宁波·七年级期末)如图,是的中线,延长至,使得,连接,,点在的平分线上,且.设,则___________(用含、的式子表示)三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2020·湖北·公安县教学研究中心八年级期中)已知三角形的三条边长为6、10和x.(1)若6是最短边长,求x的取值范围;(2)若x为整数,求三角形周长的最大值.20.(2021·重庆市渝北区实验中学校八年级期中)如图,在中,于点.(1)尺规作图:作的平分线交于点(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求的度数.21.(2020·天津市红桥区教师发展中心八年级期中)如图所示,已知△ABC中,AB=AC,E,D,F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.22.(2021·山东·单县湖西学校八年级阶段练习)如图所示,在中,和的平分线相交于点P,且,,垂足分别是E、F.(1)PE与PF相等吗?请说明理由;(2)若,,,点P到BC的距离为2,求的面积.23.(2022·全国·八年级专题练习)问题发现:如图1,已知为线段上一点,分别以线段,为直角边作等腰直角三角形,,,,连接,,线段,之间的数量关系为______;位置关系为_______.拓展探究:如图2,把绕点逆时针旋转,线段,交于点,则与之间的关系是否仍然成立?请说明理由.24.(2022·江苏镇江·八年级阶段练习)我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列问题:(1)求证:△OAC和△OBD是兄弟三角形.(2)“取BD的中点P,连接OP,试说明AC=2OP.”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.①请在图中通过作辅助线构造△BPE≌△DPO,并证明BE=OD;②求证:AC=2OP.25.(2022·辽宁·沈阳市第一二六中学七年级阶段练习)等腰△ABC,CA=CB,D为直线AB上一动点,以CD为腰作等腰三角形△CDE,顶点C、D、E按逆时针方向排列,CD=CE,∠ACB=∠DCE,连接BE.(1)若∠ACB=60°,当点D在线段AB上时,如图(1)所示,此时AD与BE的数量关系为______;(2)若∠ACB=90°,当点D在线段BA延长线上时,如图(2)所示,AD与BE有什么关系,说明理由;(3)当时,若△CAD中最小角为15°,试探究∠CDA的度数(直接写出结果).26.(2022·辽宁沈阳·七年级期末)如图①,在△ABC中,AB=AC=BC=10cm,动点P以每秒1cm的速度从点A出发,沿线段AB向点B运动.设点P的运动时间为t(t>0)秒.(知识储备:一个角是60°的等腰三角形是等边三角形)(1)当t=5时,求证:△PAC是直角三角形;(2)如图②,若另一动点Q在线段CA上以每秒2cm的速度由点C向点A运动,且与点P同时出发,点Q到达终点A时点P也随之停止运动.当△PAQ是直角三角形时,直接写出t的值;(3)如图③,若另一动点Q从点C出发,以每秒1cm的速度沿射线BC方向运动,且与点P同时出发.当点P到达终点B时点Q也随之停止运动,连接PQ交AC于点D,过点P作PE⊥AC于E.在运动过程中,线段DE的长度是否发生变化?若不变,直接写出DE的长度;若变化,说明如何变化.2022-2023学年八年级上学期期中考前必刷卷02(人教版2022)数学·全解全析1234567891011121314CCADDCBDBCBDBC19.(1)6≤x<16(2)31【分析】(1)根据三角形的三边关系,即可求解;(2)根据三角形的三边关系,可得4<x<16,再由x为整数,可得x的最大值为15,即可求解.(1)解:由题意得:10-6<x<10+6,即4<x<16∵6是最短边长,∴x≥6∴x的取值范围是6≤x<16;(2)解:由(1)可知,4<x<16,∵x为整数,∴x的最大值为15,∴三角形周长的最大值为6+10+15=31.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.20.(1)见解析(2)11°【分析】(1)根据角平分线的作图方法作图解答即可;(2)根据三角形内角和定理及角平分线定义求出∠CAE,根据直角三角形的性质求出∠CAD,即可得到的度数.(1)如图,AE即为所求;(2)解:∵∠B=46°,∠C=68°,∴∠BAC=180°-∠B-∠C=66°,∵AE平分∠BAC,∴∠CAE=33°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C=22°,∴∠DAE=∠CAE-∠CAD=33°-22°=11°.【点睛】此题考查了角平分线的作图,三角形内角和定理,直角三角形两锐角互余的性质,正确掌握角平分线的作图及直角三角形的性质是解题的关键.21.证明见详解【分析】做辅助线DE、DF,证明△EBD≌△DCF(SAS),证得△EDF为等腰三角形,根据等腰三角形三线合一的性质即可证得.【详解】解:如图连接DE、DF,∵AB=AC,∴∠EBD=∠DCF,在△EBD和△DCF中,,∴△EBD≌△DCF(SAS),∴DE=DF,则△EDF为等腰三角形,又∵DG⊥EF,∴EG=GF,∴EG=EF.【点睛】此题考查了等腰三角形判定与性质、全等三角形的判定与性质,解题的关键是作辅助线构造全等三角形并证明△EDF是等腰三角形.22.(1)PE与PF相等,理由见解析;(2)18【分析】(1)过P点作PH⊥BC于H点,根据角平分线的性质得到PH=PE,PH=PF,等量代换即可得到PE=PF;(2)由(1)得到PE=PF=2,然后根据进行计算.(1)解:PE与PF相等.理由:过P点作PH⊥BC于H点,如图,∵BP为∠ABC的平分线,PE⊥BA,PH⊥BC,∴PH=PE,∵CP为∠ACB的平分线,PF⊥CA,PH⊥BC,∴PH=PF,∴PE=PF;(2)∵点P到BC的距离为2,即PH=2,∴PE=PF=2,∴.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.23.问题发现:,;拓展探究:成立,理由见解析【分析】问题发现:根据题目条件证△ACE≌△DCB,再根据全等三角形的性质即可得出答案;拓展探究:用SAS证,根据全等三角形的性质即可证得.【详解】解:问题发现:延长BD,交AE于点F,如图所示:∵,∴,又∵,∴(SAS),,∵,∴,∴,∴,,故答案为:,;拓展探究:成立.理由如下:设与相交于点,如图1所示:∵,∴,又∵,,∴(SAS),∴,,∵,∴,∴,∴,即,依然成立.【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.24.(1)见解析(2)①见解析;②见解析【分析】(1)证出∠AOC+∠BOD=180°,由兄弟三角形的定义可得出结论;(2)①延长OP至E,使PE=OP,证明△BPE≌△DPO(SAS),由全等三角形的性质得出BE=OD;②证明△EBO≌△COA(SAS),由全等三角形的性质得出OE=AC,则可得出结论.(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=360°-∠AOB-∠COD=360°-90°-90°=180°,又∵AO=OB,OC=OD,∴△OAC和△OBD是兄弟三角形;(2)①证明:延长OP至E,使PE=OP,∵P为BD的中点,∴BP=PD,又∵∠BPE=∠DPO,PE=OP,∴△BPE≌△DPO(SAS),∴BE=OD;②证明:∵△BPE≌△DPO,∴∠E=∠DOP,∴BEOD,∴∠EBO+∠BOD=180°,又∵∠BOD+∠AOC=180°,∴∠EBO=∠AOC,∵BE=OD,OD=OC,∴BE=OC,又∵OB=OA,∴△EBO≌△COA(SAS),∴OE=AC,又∵OE=2OP,∴AC=2OP.【点睛】本题是三角形综合题,考查了新定义兄弟三角形,全等三角形的判定与性质,正确作出辅助线是解题的关键.25.(1);AD=BE;(2);AD=BE,理由见解析;(3)105°或45°或15°.【分析】(1)根据全等三角形的判定可以得出△ACD≌△BCE,从而得出结论;(2)根据全等三角形的判定可以得出△ACD≌△BCE,从而得出结论;(3)分D在线段AB上、当点D在BA的延长线上、点D在AB的延长线上三种情形根据等边三角形的性质、三角形内角和定理计算即可.(1)∵∠ACB=60°,∠ACB=∠DCE,∴∠ACB=∠DCE=60°.∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.故答案为:AD=BE;(2)AD=BE,理由如下:∵∠ACB=90°,∠ACB=∠DCE,∴∠ACB=∠DCE=90°.∴∠ACB-∠ACE=∠DCE-∠ACE,即∠DCA=∠ECB.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.(3)解:当D在线段AB上时,∵BECA,∴∠CBE=∠ACB,∵△ACD≌△BCE,∴∠CAD=∠CBE,∴∠CAD=∠ACB,又∠CAB=∠CBA,∴△CAB为等边三角形,∴∠CAB=60°,当△CAD中的最小角是∠ACD=15°时,∴∠CDA=180°-60°-15°=105°,当点D在BA的延长线上时,∵BECA,∴∠ACE=∠CEB,∠ABE=∠CAB,∵△DCA≌△ECB,∴∠CDA=∠CEB,∠CAD=∠CBE,∴∠ACB=∠ACE+ECB=∠CEB+∠ECB=180°-∠CBE=180°-∠CAD=∠CAB=∠CBA,∴△CAB是等边三角形,当△CAD中的最小角是∠ACD=15°时,∠CDA=∠CAB-∠ACD=45°,当△CAD中的最小角是∠CDA时,∠CDA=15°;当点D在AB的延长线上时,只能∠CDA=15°,综上所述,∠CDA的度数为105°或45°或15°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、等边三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的首先思考问题.26.(1)见解析(2)4或(3)不变,5cm【分析】(1)利用等腰三角形三线合一的性质证明即可;(2)分两种情况:①当∠APQ=90°时,则∠AQP=30°,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论