2023届内蒙古翁牛特旗数学九年级上册期末教学质量检测模拟试题含解析_第1页
2023届内蒙古翁牛特旗数学九年级上册期末教学质量检测模拟试题含解析_第2页
2023届内蒙古翁牛特旗数学九年级上册期末教学质量检测模拟试题含解析_第3页
2023届内蒙古翁牛特旗数学九年级上册期末教学质量检测模拟试题含解析_第4页
2023届内蒙古翁牛特旗数学九年级上册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若关于的一元二次方程有两个不相等的实数根,则的取值范围()A.且 B. C. D.2.sin65°与cos26°之间的关系为()A.sin65°<cos26° B.sin65°>cos26°C.sin65°=cos26° D.sin65°+cos26°=13.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.64.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.5.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD6.4的平方根是()A.2 B.–2 C.±2 D.±7.如图所示,不能保证△ACD∽△ABC的条件是()A.AB:BC=AC:CD B.CD:AD=BC:AC C.CD2=ADDC D.AC2=ABAD8.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D9.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A′在AB上,则旋转角的度数是()A.30° B.45° C.60° D.90°10.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米二、填空题(每小题3分,共24分)11.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.12.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.13.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.14.如图,过上一点作的切线,与直径的延长线交于点,若,则的度数为__________.15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.16.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.17.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.18.掷一个质地均匀的正方体骰子,向上一面的点数为奇数的概率是_____.三、解答题(共66分)19.(10分)如图,在正方形ABCD中,,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求AC的长;(2)求证矩形DEFG是正方形;(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.(6分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.21.(6分)郑万高铁开通后,极大地方便了沿线城市人民的出行.高铁开通前,从地到地需乘普速列车绕行地,已知,车速为高铁开通后,可从地乘高铁以的速度直达地,其中在的北偏东方向,在的南偏东方向.甲、乙两人分别乘高铁与普速列车同时从出发到地,结果乙比甲晚到小时.试求两地的距离.22.(8分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.23.(8分)今年我县为了创建省级文明县城,全面推行中小学校“社会主义核心价值观”进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.请根据统计表和统计图提供的信息,解答下列问题:(1)本次随机抽取的样本容量为__________;(2)统计表中_________,_________.(3)若该校共有学生5000人,请你估算该校学生在本次检测中达到“(优秀)”等级的学生人数.24.(8分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.25.(10分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.26.(10分)如图,某小区规划在一个长,宽的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的面积都为.应如何设计道路的宽度?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意可得k满足两个条件,一是此方程是一元二次方程,所以二次项系数k不等于0,二是方程有两个不相等的实数根,所以b2-4ac>0,根据这两点列式求解即可.【详解】解:根据题意得,k≠0,且(-6)2-36k>0,解得,且.故选:A.【点睛】本题考查一元二次方程的定义及利用一元二次方程根的情况确定字母系数的取值范围,根据需满足定义及根的情况列式求解是解答此题的重要思路.2、B【分析】首先要将它们转换为同一种锐角三角函数,再根据函数的增减性进行分析.【详解】∵cos26°=sin64°,正弦值随着角的增大而增大,∴sin65°>cos26°.故选:B.【点睛】掌握正余弦的转换方法,了解锐角三角函数的增减性是解答本题的关键.3、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【点睛】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.4、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.6、C【分析】根据正数的平方根的求解方法求解即可求得答案.【详解】∵(±1)1=4,

∴4的平方根是±1.

故选:C.7、D【分析】对应边成比例,且对应角相等,是证明三角形相似的一种方法.△ACD和△ABC有个公共的∠A,只需要再证明对应边成比例即满足相似,否则就不是相似.【详解】解:图中有个∠A是公共角,只需要证明对应边成比例即可,△ACD中三条边AC、AD、DC分别对应的△ABC中的AB、AC、BC.A、B、C都满足对应边成比例,只有D选项不符合.故本题答案选择D【点睛】掌握相似三角形的判定是解决本题的关键.8、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:

图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.9、C【分析】根据旋转的性质得出AO=A′O,得出等边三角形AOA′,根据等边三角形的性质推出即可.【详解】解:∵∠AOB=90°,∠B=30°,∴∠A=60°,∵△A′OB′可以看作是△AOB绕点O顺时针旋转α角度得到的,点A′在AB上,

∴AO=A′O,∴△AOA′是等边三角形,

∴∠AOA′=60°,

即旋转角α的度数是60°,

故选:C【点睛】本题考查了等边三角形的性质和判定,旋转的性质等知识点,关键是得出△AOA′是等边三角形,题目比较典型,难度不大.10、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【点睛】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.二、填空题(每小题3分,共24分)11、1【分析】根据题意,讨论当k=0时,符合题意,当时,一元二次方程有两个相等的实数根即,据此代入系数,结合完全平方公式解题即可.【详解】当k=0,方程为一元一次方程,没有两个实数根,故关于的方程有两个相等的实数根,即即故答案为:1;.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.12、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.13、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14、26°【分析】连接OC,利用切线的性质可求得∠COD的度数,然后利用圆周角定理可得出答案.【详解】解:连接OC,

∵CD与⊙O相切于点D,与直径AB的延长线交于点D,

∴∠DCO=90°,

∵∠D=38°,

∴∠COD=52°,

∴∠E=∠COD=26°,

故答案为:26°.【点睛】此题考查切线的性质以及圆周角定理,关键是通过连接半径构造直角三角形求出∠COD的度数.15、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.16、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.17、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.18、【解析】解:掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为:.故答案为.三、解答题(共66分)19、(1)2;(2)见解析;(3)是,定值为8【分析】(1)运用勾股定理直接计算即可;(2)过作于点,过作于点,即可得到,然后判断,得到,则有即可;(3)同(2)的方法证出得到,得出即可.【详解】解:(1),∴AC的长为2;(2)如图所示,过作于点,过作于点,正方形,,,,且,四边形为正方形,四边形是矩形,,,,又,在和中,,,,矩形为正方形,(3)的值为定值,理由如下:矩形为正方形,,,四边形是正方形,,,,在和中,,,,,是定值.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论。20、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1)∵,∴,∵,,∴,∵是直径,∴,∴,∴,∴,∴,∴是的切线.(2)①当时,,是等边三角形,可得,∵,∴,,∴.②当时,易知,的边上的高,∴.【点睛】此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关键.21、两地的距离为【分析】过点作交的延长线于点,利用解直角三角形求出AB、AD、BD的长度,设从到的时间为小时,在Rt△ACD中,利用勾股定理列出方程,求出t的值,然后得到AC的长度.【详解】解:由题意可知,.过点作交的延长线于点,.设从到的时间为小时,则从到再到的时间为小时,,.易得,.在中,,,即,解得:(舍去),,.【点睛】本题考查了解直角三角形的应用,方位角问题,利用勾股定理解直角三角形,解题的关键是熟练运用解直角三角形和勾股定理求出各边长度,从而列出方程解题.22、1【分析】由勾股定理求出AB=1,由旋转的性质得出BE=BC=6,即可得出答案.【详解】∵在△ABC中,∠C=90°,CB=6,CA=8,∴AB==10,由旋转的性质得:BE=BC=6,∴AE=AB﹣BE=10﹣6=1.【点睛】本题考查了旋转的性质以及勾股定理;熟练掌握旋转的性质是解题的关键.23、(1)100;(2)30,0.3;(3)1500人【分析】(1)用B组的人数除以B组的频率可以求得本次的样本容量;(2)用样本容量×A组的频率可求出a的值,用C组的频数除以样本容量可求出b的值;(3)用5000×A组的频率可求出在本次检测中达到“(优秀)”等级的学生人数.【详解】解:(1)本次随机抽取的样本容量为:35÷0.35=100,故答案为:100;(2)a=100×0.3=30,b=30÷100=0.3,故答案为:30,0.3;(3)5000×0.3=1500(人),答:达到/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论