




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列反比例函数图象一定在第一、三象限的是()A. B. C. D.2.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.23.从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是()A. B. C. D.4.如图,在正方形网格中,△ABC的三个顶点都在格点上,则cosB的值为()A. B. C. D.15.点A(-2,1)关于原点对称的点A'的坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)6.定义新运算:,例如:,,则y=2⊕x(x≠0)的图象是()A. B. C. D.7.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)8.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名 B.450名 C.475名 D.500名9.函数的图象如图所示,那么函数的图象大致是()A. B. C. D.10.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是()A.150° B.120° C.105° D.75°11.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件12.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或0二、填空题(每题4分,共24分)13.若抛物线的顶点在坐标轴上,则b的值为________.14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___个.15.已知中,,,,,垂足为点,以点为圆心作,使得点在外,且点在内,设的半径为,那么的取值范围是______.16.足球从地面踢出后,在空中飞行时离地面的高度与运动时间的关系可近似地表示为,则该足球在空中飞行的时间为__________.17.点(5,﹣)关于原点对称的点的坐标为__________.18.一元二次方程x2=2x的解为________.三、解答题(共78分)19.(8分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.20.(8分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.21.(8分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)22.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.23.(10分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.25.(12分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.26.为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件.(1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据反比例函数的性质,函数若位于一、三象限,则反比例函数系数k>0,对各选项逐一判断即可.【详解】解:A、∵m2+1>0,∴反比例函数图象一定在一、三象限;B、不确定;
C、不确定;
D、不确定.
故选:A.【点睛】本题考查了反比例函数的性质,理解反比例函数的性质是解题的关键.2、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.3、C【分析】根据有理数的定义可找出,0,π,,6这5个数中0,6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】解:在,0,π,,6这5个数中0,6为有理数,抽到有理数的概率是.故选C.【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中有理数的个数是解题的关键.4、B【分析】先根据勾股定理求出AB的长,再根据余弦的定义求解即可.【详解】∵AC=2,BC=2,∴AB=,∴cosB=.故选B.【点睛】本题考查了勾股定理,以及锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.5、D【解析】根据两个点关于原点对称时,它们的横纵坐标符号相反,即可求解.【详解】解:点A(-2,1)关于原点对称的点A'的坐标是(2,-1).
故选:D.【点睛】本题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.6、D【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【详解】解:由新定义得:,根据反比例函数的图像可知,图像为D.故选D.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用新定义写出正确的函数解析式,再根据函数的解析式确定答案,本题列出来的是反比例函数,所以掌握反比例函数的图像是关键.7、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),
则点B关于x轴的对称点C的坐标是(2,-2),故答案为D8、B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀,∴该校考生的优秀率是:×100%=30%,∴该校达到优秀的考生约有:1500×30%=450(名);故选B.【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想.9、D【解析】首先由反比例函数的图象位于第二、四象限,得出k<0,则-k>0,所以一次函数图象经过第二四象限且与y轴正半轴相交.【详解】解:反比例函数的图象在第二、四象限,函数的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:
(1)反比例函数的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.
(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.10、C【解析】试题解析:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选C.11、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、C【分析】利用因式分解法求解可得.【详解】解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.二、填空题(每题4分,共24分)13、±1或0【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2-bx+9的顶点在坐标轴上,所以分两种情况列式求解即可.【详解】解:∵,,∴顶点坐标为(,),当抛物线y=x2-bx+9的顶点在x轴上时,=0,解得b=±1.当抛物线y=x2-bx+9的顶点在y轴上时,=0,解得b=0,故答案为:±1或0【点睛】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.14、1【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中黄色球可能有x个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=,解得:x=1.∴袋中黄色球可能有1个.故答案为:115、【分析】先根据勾股定理求出AB的长,进而得出CD的长,再求出AD,BD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,∴CD=.
∵AD•BD=CD2,
设AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.
∵点A在圆外,点B在圆内,∴BD<r<AD,
∴r的范围是,
故答案为:.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.16、9.8【分析】求当t=0时函数值,即与x轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,解得:∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x轴的交点是本题的解题关键17、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,纵坐标为,故点P(5,−)关于原点对称的点的坐标是:(-5,).故答案为:(-5,).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.18、x1=0,x1=1【解析】试题分析:移项得x1-1x=0,即x(x-1)=0,解得x=0或x=1.考点:解一元二次方程三、解答题(共78分)19、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角形,求出,证出四边形是矩形,再由垂直平分线的性质得出,即可得出结论;(2)①证明,即可得出;②由垂直的定义得出,由相似三角形的性质得出,即可得出结论;(3)存在两种情况:①当时,证出,由勾股定理求出,即可得出结果;②当时,得出即可.【详解】解:(1)①,,,由旋转的性质得:,,在和中,,,;故答案为:;②当时,四边形是正方形;理由如下:由①得:,,作于,如图所示:则是等腰直角三角形,,,,,是等腰直角三角形,,,又,四边形是矩形,又垂直平分,,四边形是正方形;故答案为:;(2)①,理由如下:由旋转的性质得:,,,,,;②,,由①得:,,又,四边形是矩形;(3)在点的运动过程中,若恰好为等腰三角形,存在两种情况:①当时,则,,,,,,,,;②当时,;综上所述:若恰好为等腰三角形,此时的长为或.【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、矩形的判定、正方形的判定、相似三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握旋转的性质,证明三角形相似是解决问题的关键,注意分类讨论.21、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作于点,由题意知,则,∴.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.22、(1)1;(2)作图见解析;(3)①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4)3,3,2,﹣1<a<1.【解析】(1)把x=-2代入y=x2-2|x|得y=1,
即m=1,
故答案为:1;
(2)如图所示;(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;
(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;
②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,
∴x2-2|x|=2有2个实数根;
③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,
∴a的取值范围是-1<a<1,
故答案为:3,3,2,-1<a<1.23、【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.24、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都租房合同简化版
- 2025私人借款担保协议合同
- 2025试用期劳动合同协议书
- 2025保险合同权益转让协议(转让)
- 2025养殖场租赁合同范本
- 2025混凝土浇筑工程合同
- 2025春季学期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- 2025室内设计合作合同范本
- 2025二手车买卖合同二手车买卖合同范本
- 2025网络设备采购合同(标准范本)
- 2025年国家粮食和物资储备局垂直管理系事业单位招聘笔试参考题库附带答案详解
- 技能操作鉴定要素细目表(电工技师)
- 武广客运专线隧道防排水技术的突破QC成果
- 部编版五年级道德与法治下册第三单元《百年追梦复兴中华》教材分析单元分析
- 电子产品设计生产工艺流程
- 初级培训机器人的机械系统
- 制造工厂品质宣传海报标语
- 涉密文件接收登记表
- 高炉炼铁用设备材料词汇中英文翻译对照表
- 吸入装置正确使用方法调查表
- 《异位骨化》PPT课件.ppt
评论
0/150
提交评论