黑龙江省北安市第一中学2022年高三第二次联考数学试卷含解析_第1页
黑龙江省北安市第一中学2022年高三第二次联考数学试卷含解析_第2页
黑龙江省北安市第一中学2022年高三第二次联考数学试卷含解析_第3页
黑龙江省北安市第一中学2022年高三第二次联考数学试卷含解析_第4页
黑龙江省北安市第一中学2022年高三第二次联考数学试卷含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a2.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.3.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.4.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.296.设函数,则函数的图像可能为()A. B. C. D.7.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.8.若函数有两个极值点,则实数的取值范围是()A. B. C. D.9.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.10.曲线在点处的切线方程为,则()A. B. C.4 D.811.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.12.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加二、填空题:本题共4小题,每小题5分,共20分。13.设,满足约束条件,则的最大值为______.14.函数的单调增区间为__________.15.若在上单调递减,则的取值范围是_______16.函数的值域为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.18.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.19.(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:20.(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.21.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.22.(10分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.2.D【解析】

取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.3.A【解析】

根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.4.B【解析】

化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.5.D【解析】

由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.6.B【解析】

根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.7.A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.8.A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.9.D【解析】

利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.10.B【解析】

求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.11.B【解析】

设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,

当且仅当三点共线时,取“=”号,∴的最小值为.

故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.12.C【解析】

根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.29【解析】

由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14.【解析】

先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.15.【解析】

由题意可得导数在恒成立,解出即可.【详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【点睛】本题主要考查利用导数研究函数的单调性,属于中档题.16.【解析】

利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)米.【解析】

(1)过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【详解】解:过点作于点则,在中,,,由正弦定理得:,,,,,因为,化简得,令,,且,因为,故令即,记,当时,单调递增;当时,单调递减,又,当时,取最大值,此时,的最大值为米.【点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.18.(1)1;(2)【解析】

(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值.【详解】(1)由题设,则在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题.19.(1)图形见解析,理由见解析;(2)见解析;(3)犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系【解析】

(1)利用等高条形图中两个深颜色条的高比较得出性别与雾霾天外出戴口罩有关系;(2)填写列联表即可;(3)由表中数据,计算观测值,对照临界值得出结论.【详解】解:(1)在等高条形图中,两个深色条的高分别表示女性和男性中雾霾天外出戴口罩的频率,比较图中两个深色条的高可以发现,女性中雾霾天外出带口罩的频率明显高于男性中雾霾天外出带口罩的频率,因此可以认为性别与雾霾天外出带口罩有关系.(2)列联表如下:戴口罩不戴口罩合计女性男性合计(3)由(2)中数据可得:.所以,在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了登高条形图的应用问题,属于基础题.20.(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隐含条件.(2)利用(1)中的结论,结合正弦定理和同角三角函数的关系易得的值,又由求出的值,最后由正弦定理求出的值,根据三角形的面积公式即可计算得出.【详解】(1)由已知可得,所以,因为在锐角中,,所以(2)因为,所以,因为是锐角三角形,所以,所以.由正弦定理可得:,所以,所以【点睛】此类问题是高考的常考题型,主要考查了正弦定理、三角函数以及三角恒等变换等知识,同时考查了学生的基本运算能力和利用三角公式进行恒等变换的技能,属于中档题.21.(1);(2)见解析.【解析】

(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.【详解】(1)在中,,,,,,,,因此,椭圆的标准方程为;(2)由题不妨设,设点,联立,消去化简得,且,,,,,∴代入,化简得,化简得,,,,直线,因此,直线过定点.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中直线过定点的问题,考查计算能力,属于中等题.22.(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论