2021-2022学年北京市牛山一中高考数学四模试卷含解析_第1页
2021-2022学年北京市牛山一中高考数学四模试卷含解析_第2页
2021-2022学年北京市牛山一中高考数学四模试卷含解析_第3页
2021-2022学年北京市牛山一中高考数学四模试卷含解析_第4页
2021-2022学年北京市牛山一中高考数学四模试卷含解析_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知,,,则()A. B. C. D.2.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.3.已知复数,则的虚部为()A.-1 B. C.1 D.4.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题5.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.6.若函数在处取得极值2,则()A.-3 B.3 C.-2 D.27.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.8.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.9.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.10.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.11.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.12.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.14.如果复数满足,那么______(为虚数单位).15.已知函数,则不等式的解集为____________.16.函数的单调增区间为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.18.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.19.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.20.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.21.(12分)如图,在正四棱锥中,,,为上的四等分点,即.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.22.(10分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

先将三个数通过指数,对数运算变形,再判断.【详解】因为,,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.2.C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).3.A【解析】

分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.4.D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.5.A【解析】

由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.6.A【解析】

对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.7.B【解析】

直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.8.D【解析】

这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.9.C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.10.D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.11.D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.12.B【解析】

先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.②③【解析】

根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故①不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故②正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故③正确.故答案为:②③.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.14.【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.15.【解析】

,,分类讨论即可.【详解】由已知,,,若,则或解得或,所以不等式的解集为.故答案为:【点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.16.【解析】

先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(II)【解析】

(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则化简整理,得;(Ⅱ)因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离,又,故.再由(I),得,则.又,故,即,从而,即.【点睛】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.18.(1).(2)【解析】

(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【详解】(1)由正弦定理知由己知,而∴,(2)已知,则由知先求∴∴∴【点睛】本题主要考查了正弦定理解三角形、三角形的性质、两角和的正弦公式,需熟记定理与公式,属于基础题.19.(1)(2)【解析】

(1)先消去参数,化为直角坐标方程,再利用求解.(2)直线与曲线方程联立,得,求得弦长和点到直线的距离,再求的面积.【详解】(1)由已知消去得,则,所以,所以直线的极坐标方程为.(2)由,得,设,两点对应的极分别为,,则,,所以,又点到直线的距离所以【点睛】本题主要考查参数方程、直角坐标方程及极坐标方程的转化和直线与曲线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.20.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理结合条件求得和,利用椭圆的定义求得的值,进而可得出,则椭圆的标准方程可求;(Ⅱ)设点、,将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式求出,利用几何法求得直线截圆所得弦长,可得出关于的函数表达式,利用不等式的性质可求得的取值范围.【详解】(Ⅰ)在椭圆上,,,,,,,又,,,,椭圆的标准方程为;(Ⅱ)设点、,联立消去,得,,则,,设圆的圆心到直线的距离为,则.,,,,的取值范围为.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中弦长之积的取值范围的求解,涉及韦达定理与弦长公式的应用,考查计算能力,属于中等题.21.(1)答案见解析.(2)【解析】

(1)根据题意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以为原点建立直角坐标系,求出面的法向量为,的法向量为,利用空间向量的数量积即可求解.【详解】(1)由由因为是正四棱锥,故于是,由余弦定理,在中,设再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以为原点建立直角坐标系,如图:则设面的法向量为,的法向量为则,取于是,二面角的余弦值为:【点睛】本题考查了面面垂直的判定定理、空间向量法求二面角,属于基础题.22.(1)证明见解析(2)【解析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论