初中数学微课教学设计_第1页
初中数学微课教学设计_第2页
初中数学微课教学设计_第3页
初中数学微课教学设计_第4页
初中数学微课教学设计_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8页共8页初中数学微课教学设计一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为出发点,根据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜测,并通过屡次的检验,得出正确的结论。学生通过搜集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和理论才能等方面的开展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。二、学习者分析^p:1、在学习本课之前应具备的根本知识和技能:①同类项的定义。②合并同类项法那么③多项式乘以多项式法那么。2、学习者对即将学习的.内容已经具备的程度:在学习完全平方公式之前,学生已经可以整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、教学/学习目的及其对应的课程标准:〔一〕教学目的:1、经历探究完全平方公式的过程,进一步开展符号感和推力才能。2、会推导完全平方公式,并能运用公式进展简单的计算。〔二〕知识与技能:经历从详细情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,〔包括估算〕技能;探究详细问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进展描绘。〔三〕解决问题:能结合详细情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经历。〔四〕情感与态度:敢于面对数学活动中的困难,并有独立克制困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解别人的见解,能从交流中获益。四、教育理念和教学方式:1.老师是学生学习的组织者、促进者、合作者,学生是学习的主人,在老师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同开展的过程。当学生迷路的时候,老师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,老师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。2.采用“问题情景—探究交流—得出结论—强化训练”的形式展开教学。3.教学评价方式:〔1〕通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。〔2〕通过判断和举例,给学生更多时机,在自然放松的状态下,提醒思维过程和反应知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。〔3〕通过课后访谈和作业分析^p,及时查漏补缺,确保到达预期的教学效果。五、教学媒体:多媒体六、教学和活动过程:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法那么和合并同类项法那么,通过运算以下四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析^p问题1.[学生答复]分组交流、讨论(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。〔1〕原式的特点。〔2〕结果的项数特点。〔3〕三项系数的特点〔特别是符号的特点〕。〔4〕三项与原多项式中两个单项式的关系。2.[学生答复]总结完全平方公式的语言描绘:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3.[学生答复]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1.口答:〔抢答形式,活泼课堂气氛,激发学生的学习积极性〕(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2.判断:①(a-2b)2=a2-2ab+b2②(2m+n)2=2m2+4mn+n2③(-n-3m)2=n2-6mn+9m2④(5a+0.2b)2=25a2+5ab+0.4b2⑤(5a-0.2b)2=5a2-5ab+0.04b2⑥(-a-2b)2=(a+2b)2⑦(2a-4b)2=(4a-2b)2⑧(-5m+n)2=(-n+5m)23.小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.〈四〉、学生小结你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。(2)两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否一样决定。(4)中间项是等号左边两项乘积的2倍。〈五〉、冒险岛:〔1〕〔-3a+2b〕2=________________________________〔2〕(-7-2m)2=__________________________________〔3〕(-0.5m+2n)2=_______________________________〔4〕(3/5a-1/2b)2=________________________________〔5〕(mn+3)2=__________________________________〔6〕(a2b-0.2)2=_________________________________〔7〕(2xy2-3x2y)2=_______________________________〔8〕(2n3-3m3)2=________________________________〈六〉、学生自我评价[小结]通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析^p结果,总结出了完全平方公式。在知识探究的过程中,同学们积极考虑,大胆探究,团结协作共同获得了进步。〈七〉[作业]p34随堂练习p36习题七、课后反思本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要纯熟掌握公式两种形式的使用方法,以进步运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比拟困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论