版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=-4(x–2)Tograph:6.Plottheendpointsofthelatusrectum L.R.=4withendpointsat(1,-1)&(1,-5)7.Sketchtheparabola8.Identifytheaxisofsymmetry. y=-3
Exp.2:Graph(y+3)2=-4(xVertex:(2,-3)Focus:(1,-3)Directrix:x=3L.R.:4Axis:y=-3fVertex:(2,-3)fWhat’sthefirststep?
Putinstandardform. y2-4y+1=x y2-4y+4=x-1+4Completethesquare.
(y–2)2=x+3
(y–2)2=1(x+3)Nowyoutrygraphingtheparabolaandlabelingalltheparts.What’sthefirststep?Giventhefollowinginformation,writetheequationoftheparabola.Vertexis(0,0)andFocusisat(0,2)GiventhefollowinginformatioHowcanyoutellthegraphofanequationwillbeaparabola?What’sthestandardformofaparabola?Whatarethestepsforgraphingaparabola?Whatarecommonerrorspeoplemakewhengraphingparabolas?HowcanyoutellthegraphofConicSectionStandardFormofEquationParabolaCircleEllipseHyperbolaConicSectionStandardFormof19ColleenBeaudoinForFCIT大学课件:parabolasGeometricdefinition:aconehasaplane intersectingit,crossingits verticalaxisAlgebraicdefinition:Allpointsthatareequidistantfromagivenline(thedirectrix)andafixedpointnotonthedirectrix(thefocus)Geometricdefinition:aconeyAnypointontheparabolaisequidistanttothefocusandthedirectrix.Example:PointA:d1=d1PointB:d2=d2AByAnypointontheparabolaisFocusVertexDirectrixAxisofSymmetryxyFocusxyOnevariableissquaredandoneisnot.(Howdoesthisdifferfromlinearequations?)Therearemanywaystheequationofaparabolacanbewritten.Wewillgetthequadraticpart(variablethatissquared)ontheleftoftheequalsignandthelinearpart(variableistothefirstpower)ontherightoftheequalsign.Equation: (x-h)2=c(y–k)
OR
(y-k)2=c(x–h)Onevariableissquaredandon(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:1.Putinstandardform(above)–squaredtermonleft2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:3.Plotthevertex(h,k)Notewhathappenstothesigns.4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.)(x-h)2=c(y–k)OR(y-k)(x-h)2=c(y–k)OR(y-k)2=c(x–h)
wherethevertexisat(h,k)and|c|isthewidthatthefocusTograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus.7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)(x-h)2=c(y–k)OR(y-k)Exp.1:Graph(x-5)2=12(y–6)Tograph:1.Putinstandardform–squaredtermonleft Done2.Decidewhichwaytheparabolaopens. Lookattherightside.Ify:+c→opensup Ify:-c→opensdown Ifx:+c→opensright Ifx:-c→opensleft Upbecauseyisontherightand12ispositiveExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:3.Plotthevertex(h,k)Notewhathappenstothesigns. (5,6)4.Plotthefocus:move│¼c│fromthevertexinthedirectionthattheparabolaopens.Markwithanf.
(5,9):foundbymovingup3fromthevertex5.Drawthedirectrix:│¼c│fromthevertexintheoppositedirectionofthefocus(Rememberthatthedirectrixisaline.) y=3:foundbymovingdown3fromthevertexExp.1:Graph(x-5)2=12(yExp.1:Graph(x-5)2=12(y–6)Tograph:6.Plottheendpointsofthelatusrectum/focalchord(widthatthefocus).Thewidthisthe│c│atthefocus. L.R.=12withendpointsat(-1,9)&(11,9)7.Sketchtheparabolabygoingthroughthevertexandtheendpointsofthelatusrectum.(Besuretoextendthecurveandputarrows.)8.Identifytheaxisofsymmetry.(Thelinethatgoesthroughthevertexdividingtheparabolainhalf.)
x=5Exp.1:Graph(x-5)2=12(yVertex:(5,6)Focus:(5,9)Directrix:y=3L.R.:12Axis:x=5fVertex:(5,6)fExp.2:Graph(y+3)2=-4(x–2)Tograph:1.Putinstandardform Done2.Decidewhichwaytheparabolaopens.
Leftbecausexisontherightand4isnegative3.Plotthevertex(h,k) (2,-3)4.Plotthefocus: (1,-3):foundbymovingleft1fromthevertex5.Drawthedirectrix: x=3:foundbymovingright1fromthevertexExp.2:Graph(y+3)2=-4(xExp.2:Graph(y+3)2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年哈尔滨市道外区太平人民医院公开招聘编外合同制工作人员6人考试参考试题及答案解析
- 2026徽商银行客服代表(劳务派遣制)招聘笔试备考试题及答案解析
- 2026贵州农商联合银行第一批招聘中层管理人员18人考试备考题库及答案解析
- 2026湖北省面向北京师范大学普通选调生招录考试参考题库及答案解析
- 中央统战部直属事业单位2026年度应届高校毕业生公开招聘考试参考试题及答案解析
- 2026年合肥印象滨湖旅游投资发展有限公司塘西河公园项目招聘20人笔试备考题库及答案解析
- 中国科学院西北高原生物研究所2026年支撑岗位招聘1人(青海)考试参考题库及答案解析
- 2026江西宜春丰城市市属国企下属公司招聘24人考试备考试题及答案解析
- 2026中国人寿洛阳分公司(售后部门)招聘售后内勤、售后外勤(河南)考试参考试题及答案解析
- 2026备战中考【地理 常考点巩固】精练(含答案)
- 半导体产业人才供需洞察报告 202511-猎聘
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
- 个人与团队管理-008-国开机考复习资料
- 包头铁道职业技术学院工作人员招聘考试真题2022
- 细菌内毒素工作标准品效价标定方法研究
- 撤销行政处罚决定书(示范文本)
- 心房扑动分类与治疗课件
- 浙江水运交通工程安全管理台帐
- YS/T 1077-2015眼镜架用TB13钛合金棒丝材
- 考研英语入门测试附答案
- GB/T 14691-1993技术制图字体
评论
0/150
提交评论