天津市军粮城第二中学2022-2023学年高一数学第一学期期末联考试题含解析_第1页
天津市军粮城第二中学2022-2023学年高一数学第一学期期末联考试题含解析_第2页
天津市军粮城第二中学2022-2023学年高一数学第一学期期末联考试题含解析_第3页
天津市军粮城第二中学2022-2023学年高一数学第一学期期末联考试题含解析_第4页
天津市军粮城第二中学2022-2023学年高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图所示,已知全集,集合,则图中阴影部分表示的集合为()A. B.C. D.2.函数(且)的图象一定经过的点是()A. B.C. D.3.已知函数关于x的方程有4个根,,,,则的取值范围是()A. B.C. D.4.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c5.设,且,则()A. B.C. D.6.若,则的大小关系为()A. B.C. D.7.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.8.已知函数,则A.最大值为2,且图象关于点对称B.周期为,且图象关于点对称C.最大值为2,且图象关于对称D.周期为,且图象关于点对称9.已知正数、满足,则的最小值为A. B.C. D.10.设函数f(x)=若,则实数的取值范围是()A.B.C.D.11.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.12.设,若,则的最小值为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若命题“”为真命题,则的取值范围是______14.若函数的值域为,则的取值范围是__________15.幂函数的图像经过点,则的值为____16.已知函数(为常数)的一条对称轴为,若,且满足,在区间上是单调函数,则的最小值为__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离18.已知函数与.(1)判断的奇偶性;(2)若函数有且只有一个零点,求实数a的取值范围.19.化简并求值(1)求的值.(2)已知,且是第三象限角,求的值.20.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值21.已知函数过点(1)求的解析式;(2)求的值;(3)判断在区间上的单调性,并用定义证明22.计算:(1);(2)已知,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据文氏图表示的集合求得正确答案.【详解】文氏图表示集合为,所以.故选:A2、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.3、B【解析】依题意画出函数图象,结合图象可知且,,即可得到,则,再令,根据二次函数的性质求出的取值范围,最后根据对勾函数的性质计算可得;【详解】解:因,所以函数图象如下所示:由图象可知,其中,其中,,,则,得..令,,又在上单调减,,即.故选:B.4、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.5、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.6、D【解析】根据对数的运算性质以及指数函数和对数函数的单调性即可判断【详解】因为,而函数在定义域上递增,,所以故选:D7、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A8、A【解析】,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A考点:三角函数的性质.9、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题10、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.11、A【解析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积12、D【解析】依题意,,根据基本不等式,有.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:14、【解析】由题意得15、2【解析】因为幂函数,因此可知f()=216、【解析】根据是的对称轴可取得最值,即可求出的值,进而可得的解析式,再结合对称中心的性质即可求解.【详解】因为是的对称轴,所以,化简可得:,即,所以,有,,可得,,因为,且满足,在区间上是单调函数,又因为对称中心,所以,当时,取得最小值.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离18、(1)偶函数(2)【解析】(1)根据奇偶性定义判断;(2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得小问1详解】∵的定义域为R,∴,∴为偶函数.【小问2详解】函数只有一个零点即即方程有且只有一个实根.令,则方程有且只有一个正根.①当时,,不合题意;②当时,若方程有两相等正根,则,且,解得;满足题意③若方程有一个正根和一个负根,则,即时,满足题意.∴实数a的取值范围为.19、(1)3;(2)-.【解析】(1)利用诱导公式化简求值即可;(2)应用同角三角函数的平方关系、商数关系,将目标式化简为sinα+cosα,再根据已知及与sinα+cosα的关系,求值即可.【详解】(1).(2)原式=-=-=-==sinα+cosα.∵sinαcosα=,且α是第三象限角,∴sinα+cosα=-=-=-=-20、(1);(2)在上为单调增函数;(3)【解析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;(2)判断单调性,一般由单调性定义,设,判断的正负(因式分解后判别),可得结论;(3)首先由,得,这样就有,这种函数的最值求法是用换元法,即设,把函数转化为二次函数的问题,注意在换元过程中“新元”的取值范围试题解析:(1)函数的定义域为函数(且)是奇函数,,经检验可知,函数为奇函数,符合题意(2)设、为上两任意实数,且,,,,即函数在上为单调增函数.(3),,解得或且,()令(),则当时,,解得,舍去当时,,解得考点:函数的奇偶性、单调性,函数的最值21、(1)(2)(3)在区间上单调递增;证明见解析【解析】(1)直接将点的坐标代入函数中求出,从而可求出函数解析式,(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论