版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省湟川中学2026届数学高二上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列中,,,则公比()A. B.C. D.2.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件3.“且”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列5.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知抛物线C:的焦点为F,过点P(-1,0)且斜率为的直线l与抛物线C相交于A,B两点,则()A. B.14C. D.157.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.8.如图,在三棱锥S-ABC中,E,F分别为SA,BC的中点,点G在EF上,且满足,若,,,则()A. B.C. D.9.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.10.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.11.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.12.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的长轴在轴上,若焦距为4,则__________.14.已知空间向量,,则向量在向量上的投影向量的坐标是___________.15.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,右焦点为F,点A(a,0),且|AF|=1(1)求椭圆C的方程;(2)过点F的直线l(不与x轴重合)交椭圆C于点M,N,直线MA,NA分别与直线x=4交于点P,Q,求∠PFQ的大小18.(12分)已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程19.(12分)已知圆台的上下底面半径分别为,母线长为.求:(1)圆台的高;(2)圆台的体积注:圆台体积公式:,其中,S分别为上下底面面积,h为圆台的高20.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.21.(12分)已知数列的前项和为,且,,数列是公差不为0的等差数列,满足,且,,成等比数列.(1)求数列和通项公式;(2)设,求数列的前项和.22.(10分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.2、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.3、B【解析】根据充分条件、必要条件的定义和椭圆的标椎方程,判断可得出结论.【详解】解:充分性:当,方程表示圆,充分性不成立;必要性:若方程表示椭圆,则,必有且,必要性成立,因此,“且”是“方程表示椭圆”的必要不充分条件.故选:B.4、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.5、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A6、C【解析】设A、B两点的坐标分别为,,根据抛物线的定义求出,然后将直线的方程代入抛物线方程并化简,进而结合根与系数的关系求得答案.【详解】设A、B两点坐标分别为,,直线的方程为,抛物线的准线方程为:,由抛物线定义可知:.联立方程,消去y后整理为,可得,,.故选:C.7、B【解析】根据代入计算化简即可.【详解】故选:B.8、B【解析】利用空间向量基本定理结合已知条件求解【详解】因为,所以,因为E,F分别为SA,BC的中点,所以,故选:B9、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.10、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B11、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.12、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】根据椭圆方程列方程,解得结果.【详解】因为椭圆的长轴在轴上,焦距为4,所以故答案为:8【点睛】本题考查根据椭圆方程求参数,考查基本分析求解能力,属基础题.14、【解析】根据投影向量的计算公式,计算出正确答案.【详解】向量在向量上的投影向量的坐标是.故答案为:15、36【解析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有种分组方法,再将分好的3组对应3个场馆,有种方法,则共有种分配方案.故答案为:3616、【解析】对函数求导,由导数的几何意义可得切线的斜率,求得切点,由直线的点斜式方程可得所求切线的方程【详解】函数的导数为∴,.曲线在点处的切线方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)∠PFQ=90°【解析】(1)由题意得求出a,c,然后求解b,即可得到椭圆方程(2)当直线l的斜率不存在时,验证,即∠PFQ=90°.当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0.联立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),利用韦达定理,结合直线MA的方程为.求出、.利用向量的数量积,转化求解即可【小问1详解】由题意得解得a=2,c=1,从而,所以椭圆C的方程为【小问2详解】当直线l的斜率不存在时,有,,P(4,﹣3),Q(4,3),F(1,0),则,,故,即∠PFQ=90°当直线l的斜率存在时,设l:y=k(x﹣1),其中k≠0联立得(4k2+3)x2﹣8k2x+4k2﹣12=0由题意,知Δ>0恒成立,设M(x1,y1),N(x2,y2),则,直线MA的方程为,令x=4,得,即,同理可得所以,因为0,所以∠PFQ=90°综上,∠PFQ=90°18、(1)(2),过程见解析【解析】(1)写出函数的解析式,利用二项式定理可求得函数中含项的系数;(2)利用错位相减法化简函数的解析式,求出解析式中含项的系数,再结合组合数公式化简可得结果.【小问1详解】解:当,时,,的展开式通项为,此时,函数中含项的系数之和为.【小问2详解】解:因为,①则,②①②得,所以,,而为中含项的系数,而函数中含项的系数也可视为中含项的系数,故,且,故.19、(1);(2).【解析】(1)作出圆台的直观图,过点A作,垂足为H,由勾股定理可求圆台的高;(2)结合(1),利用圆台的体积公式可求圆台的体积【详解】(1)作出圆台的直观图,如图,设圆台上下底面圆心分别为,为圆台的一条母线,连接,,过点A作,垂足为H,则的长等于圆台的高,因为圆台的上下底面半径分别为,母线长为所以,,则,可得,故圆台高为;(2)圆的面积圆的面积为故圆台的体积为20、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH,CH,则由(1)知:,结合点为MC的中点,所以PA=PB,故由三线合一得:PH⊥AB,且CH⊥AB,所以∠CHP即为二面角的平面角,因为,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值为21、(1),(2)【解析】(1)根据,求出是以1为首项,3为公比的等比数列,求出的通项公式,求出的公差,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程纸质合同范本
- 夫妻合伙分红合同范本
- 房屋模板安装合同范本
- 房屋设计服务合同范本
- 家居装修代理合同范本
- 建筑劳务合同解除协议
- 戏剧服装采购合同范本
- 委托购买物品合同范本
- 工程劳务补充合同范本
- 工程施工合同保密协议
- 2024-2025学年重庆市大足区六年级(上)期末数学试卷
- 2025年高级经济师金融试题及答案
- 苏少版七年级上册2025秋美术期末测试卷(三套含答案)
- 2026年哈尔滨科学技术职业学院单招职业技能测试题库带答案详解
- GB/T 7714-2025信息与文献参考文献著录规则
- 涉融资性贸易案件审判白皮书(2020-2024)-上海二中院
- DB65∕T 8031-2024 高海拔地区民用建筑设计标准
- 2025年人社局工作考试题及答案
- 2026年山东力明科技职业学院单招职业技能考试题库含答案详解
- 2024年暨南大学马克思主义基本原理概论期末考试题带答案
- 2025内蒙古能源集团智慧运维公司社会招聘(105人)笔试参考题库附带答案详解(3卷)
评论
0/150
提交评论