版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8高聚物的力学性质1高聚物的机械强度和粘弹性8高聚物的力学性质1高聚物的机械强度和粘弹性1聚合物的力学性能指的是其受力后的响应,如形变大小、形变的可逆性及抗破损性能等。聚合物的力学性能指的是其受力后的响应,如形变大小、形变的可逆2最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件3最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件4最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件5最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件6最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件7最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件8(3)均匀压缩压缩应变体积模量K材料受到均匀压力压缩时发生体积收缩压缩应变体积模量的倒数是可压缩度B(3)均匀压缩压缩应变体积模量K材料受到均匀压力压缩时发生体9泊松比:在拉伸实验中,材料横向应变与纵向应变之比值的负数对于大多数材料来说,拉伸时有体积变化,一般会发生体积膨胀,泊松比在0.2-0.5之间。橡胶和小分子的泊松比接近于0.5,接近于理想不可压缩体。8.1.1.2泊松比泊松比:在拉伸实验中,材料横向应变与纵向应变之比值的负数对10三种基本变形的弹性模量分别称为杨氏模量、剪切模量和体积模量,分别计为E、G、B,外加泊松比,构成描述材料力学性质的四个主要参数。各向同性材料,四个参数只有两个是独立的对于各向异性材料来说,情况要复杂得多,通常至少有5-6个弹性模量,有的多达36项。假若材料是不可压缩的,即无论施加多大的流体静压P,体积应变始终为零。即相当于K=∞。
三种基本变形的弹性模量分别称为杨氏模量、剪切模量和体积模量,11弯曲:对材料施加一弯曲力矩,使材料发生弯曲。主要有一点弯曲和三点弯曲材料受力方式除以上三种基本类型外,还有弯曲和扭转扭转:对材料施加扭转力矩弯曲:对材料施加一弯曲力矩,使材料发生弯曲。主要有一点弯曲和12机械强度是材料所能承受的最大应力,表征了材料的受力极限,在实际应用中具有重要的意义。包括抗张强度、冲击强度、弯曲强度、压缩强度、硬度、疲劳等。拉伸强度是衡量材料抵抗拉伸破坏的能力,也称抗张强度8.1.2高聚物材料机械强度评价指标指标8.1.2.1拉伸强度与压缩强度在规定试验温度、湿度和实验速度下,在标准试样上沿轴向施加拉伸负荷,直至试样被拉断。试样断裂前所受的最大负荷P与试样横截面积之比为抗张强度tt=Fmax/b•d机械强度是材料所能承受的最大应力,表征了材料的受力极限,在实13但要注意试样宽度与厚度在拉伸过程中是随试样拉伸而逐渐减小的,由于达到最大载荷时的b、d值的测量很不方便,工程上一般采用起始尺寸来计算拉伸强度。E=(ΔF/bd)/(Δl/l0)式中ΔF为变形较小时的载荷类似,如果向试样施加单向压缩载荷,则侧得压缩强度和压缩模量。理论上二者应相等,实际上压缩模量通常稍大于拉伸模量。由于整个拉伸过程中,高聚物的应力和应变的关系并非线性的,只要当变形很小时,高聚物才可视为虎克弹性体,因此拉伸模量(杨氏模量)通常由拉伸初始阶段的应力应变计算但要注意试样宽度与厚度在拉伸过程中是随试样拉伸而逐渐减小的,14也称抗弯强度或挠曲强度。抗弯强度的测定是在规定的试验条件下,对标准试样施加一静止弯曲力矩,直至试样断裂。设试验过程中最大的负荷为P,则抗弯强度f为:f=1.5Pl0/bd28.1.2.2弯曲强度也称抗弯强度或挠曲强度。抗弯强度的测定是在规定的试验条件下,15冲击强度也称抗冲强度,是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位截面积所吸收的能量。试样断裂时吸收的能量等于断裂时试样所消耗的功W,因此冲击强度为:冲击强度的测试方法很多,应用较广的有摆锤式冲击试验、落重式冲击试验和高速拉伸等。B、d为冲断试样宽度与厚度i=
W/bd8.1.2.3冲击强度冲击强度也称抗冲强度,是衡量材料韧性的一种强度指标,表征材料16摆锤式冲击试验是让重锤摆动冲击标准试样,测量摆锤冲断试样所消耗的功,试样的安放方式有简支梁式(Charpy卡皮式试验)和悬臂梁式(Izod伊伍德式试验)。Charpy或Izod试验用试样均可用带缺口的和不带缺口的两种。采用带缺口的试样是为了使缺口处试样的截面积大大减小,受冲击时,试样断裂一定发生于这一薄弱处,所有的冲击能量都能在这局部被吸收,提高了试验的准确性,但在计算冲击强度时,试样的厚度指缺口处的剩余厚度。试样两端支撑着,摆锤冲击试样的中部试样一端固定,摆锤冲击自由端摆锤式冲击试验是让重锤摆动冲击标准试样,测量摆锤冲断试样所消17落重式冲击试验是让球状或镖状标准重物从已知高度落到板状或片状试样上,试验下落重物的冲击刚刚足以使试样产生裂痕或破坏的条件。也可以改变质量或高度使mgh正好等于冲断试样所需要的能量而得到试样的断裂能。通常为保证冲击速度不变,以固定高度、改变质量的方法来获得试样所需的断裂能。它的冲击速度由自由落重的高度(h)决定。质量为mg(m为重物质量,g为重力加速度)从h高度下落冲击试样,试样的断裂破坏能即为势能mgh减去冲断试样后落重的剩余动能落重式冲击试验是让球状或镖状标准重物从已知高度落到板状或片状18在拉伸试验中,当拉伸速度足够高时,拉断试样所做的功(断裂功)与试样受冲击破坏所吸收的能量相同,这就是高速拉伸试验的理论依据。通常测量整个拉伸过程应力和应变的关系,得到应力-应变曲线,用曲线下的面积作为材料冲击强度的一种指标。各种冲击试验所得结果很不一致,试样的几何形状和尺寸对其影响很大,薄的试样一般比厚的试样给出较高的冲击强度。冲击强度的单位也很混乱。在拉伸试验中,当拉伸速度足够高时,拉断试样所做的功(断裂功)19
硬度是衡量材料表面抵抗机械压力的能力的一种指标。硬度的大小与材料的抗张强度和弹性模量有关,而硬度试验又不破坏材料、方法简便,有时作为估计材料抗张强度的替代方法。硬度试验方法很多,加荷方式有动载法和静载法两种,前者用弹性回跳法和冲击力把钢球压入试样,后者则以一定形状的硬材料为压头,平稳地逐渐加荷将压头压入试样,统称压入法,因压头的形状不同和计算方法差异又有布氏、洛氏和邵氏等名称。8.1.2.4硬度硬度是衡量材料表面抵抗机械压力的能力的一种指标。硬度的大小与20(1)布氏硬度试验布氏硬度实验原理图在直径为D(mm)的淬火钢球上施加规定的载荷P(公斤力),压入试样表面,保持一定时间后,卸除载荷。测量压入深度h及试样表面凹痕的直径d,计算试样表面凹痕的表面积F。用所承受的平均压力P除以压痕表面积,所得之商(公斤/毫米2)表示布氏硬度值,符号为HB,计算公式是:注意如此测量的硬度并非材料常数,与试验条件有关。(1)布氏硬度试验布氏硬度实验原理图在直径为D(mm)的淬21(2)洛氏硬度试验洛氏硬度实验原理图洛氏硬度是在先后两次施加载荷(初载荷P0及主载荷P1)的条件下,将标准压头(金刚石圆锥体或小钢球)压入试样表面来进行(2)洛氏硬度试验洛氏硬度实验原理图洛氏硬度是在先后两次施加22维氏硬度实验原理图维氏硬度试验是用一个相对面夹角为136º的金刚石正四棱锥体压头,在一定载荷P(公斤力)作用下压入试样表面(3)维氏硬度试验维氏硬度实验原理图维氏硬度试验是用一个相对面夹角为136º的23
疲劳试验测试材料在交变应力或应变作用下的力学性能,用以评价材料在重复作用力下的抗破坏能力。疲劳寿命:在给定的振动条件下试样产生破坏所需的周数。8.1.2.5疲劳疲劳极限:材料刚好不发生疲劳破坏的最大应力振幅疲劳试验测试材料在交变应力或应变作用下的力学性能,用以评价材24
聚合物的屈服强度(Y点强度)聚合物的杨氏模量(OA段斜率)聚合物的断裂强度(B点强度)聚合物的断裂伸长率(B点伸长率)聚合物的断裂功(曲线下面积)从应力—应变曲线可以获得的被拉伸聚合物的信息8.2高聚物的拉伸行为及应力应变曲线聚合物的屈服强度从应力—应变曲线可以获得的被拉伸聚合物的信25软而韧、软而弱、硬而脆、硬而强、硬而韧强-弱代表强度大小;软-硬代表模量高低;韧-脆代表断裂功大小,“脆”是无屈服现象且断裂伸长很小,“韧”是断裂伸长和断裂应力都较高。高分子材料应力-应变曲线类型软而韧、软而弱、硬而脆、硬而强、硬而韧强-弱代表强度大小;软268.2.1非晶态高聚物应力应变曲线1.在很低的温度下(T<<Tg),应力与应变呈正比的关系,但应变在小于10%就发生断裂-普弹形变2.当温度略为升高以后,应力-应变曲线出现转折点B,该点称为屈服点,此时应力达到极大值,称为屈服应力。试样应变继续增大,过了B点应力反而下降-应变软化。继续拉伸,试样便发生断裂,断裂应变也小于20%3.若温度继续升高到Tg以下几十度范围时,试样在越过屈服点之后发生很大的应变(可达百分之几百),但其应力则不增加或增加不大,在断裂前曲线又呈较明显的上升-应变硬化,直到断裂。试样在断裂处对应的应力称为断裂应力,对应的应变称为断裂伸长率4.当温度升高到Tg以上,试样进入高弹态,在较小的应力下即发生形变量很大的高弹形变,应力-应变曲线不再出现屈服点,却出现一较长的平台,直到试样断裂前夕,曲线才出现明显的上升8.2.1非晶态高聚物应力应变曲线1.在很低的温度下(T<<27
温度较低时,在材料发生屈服之前发生的断裂,形变很小,称为脆性断裂;温度稍高,材料在发生屈服之后发生的断裂,因出现较大的形变,称为韧性断裂。玻璃态高聚物在玻璃态拉伸时,曲线的起始阶段是一段直线,应力与应变成正比,试样表现出虎克弹性体的行为,在这段范围内停止拉伸,试样将立刻恢复原状---普弹形变。从这段曲线可以计算材料的杨氏模量。其对应的应变只有百分之几,从微观的角度看,这种高模量、小形变的弹性行为是由高分子的键长、键角变化引起的。温度较低时,在材料发生屈服之前发生的断裂,形变很小,称28屈服点之后出现大变形主要是高分子的链段运动引起的,但外力除去后,由于高聚物处于玻璃态,也不能自发恢复,当温度升到Tg附近,链段运动解冻,形变恢复。材料在屈服之后发生的形变在停止拉伸后,试样的大形变无法完全恢复,但是如果让温度升到Tg附近,形变又恢复了。显然这在本质上是一种高弹形变,而不是粘流形变。玻璃态高聚物在大外力作用下发生的大形变,本质与橡胶的高弹形变一样,只不过表现形式有差别,为了与普通的高弹形变相区别,通常称为强迫高弹形变屈服点之后出现大变形主要是高分子的链段运动引起的,但外力除去29强迫高弹形变产生的原因也就是在外力的作用下,非晶聚合物中本来被冻结的链段被强迫运动,使高分子链发生伸展,产生大的形变。但由于聚合物仍处于玻璃态,当外力移去后,链段不能再运动,形变也就得不到回复,只有当温度升至Tg附近,使链段运动解冻,形变才能复原。
松弛时间与应力的关系:由上式可见,σ越大,τ越小,即外力降低了链段在外力作用方向上的运动活化能,因而缩短了沿力场方向的松弛时间,当应力增加致使链段运动松弛时间减小到与外力作用时间同一数量级时,链段开始由蜷曲变为伸展,产生强迫高弹变形强迫高弹形变产生的原因也就是在外力的作用下,非晶聚合物中本来30
TbTg温度低于Tb,玻璃态高聚物必定发生脆性断裂,因此这个温度称为脆化温度,玻璃态高聚物在Tb
和Tg之间的温度范围内,才能在外力作用下发生强迫高弹形变,而这正是塑料具有韧性的原因,因此Tb是塑料使用的最低温度。Tb以下,塑料象玻璃一样一敲就碎,没有使用价值。温度要求玻璃态高聚物强迫高弹形变产生条件断裂应力大于屈服应力T<Tb,先达到b,脆性断裂T>Tb,先达到y,韧性断裂屈服应力断裂应力TbTg温度低于Tb,玻璃态高聚物必定发生脆性断31刚性过大的高聚物,虽然链堆砌较松散,但链段不能运动,也不出现强迫高弹性,材料仍是脆性的。强迫高弹性与高聚物的结构的关系只有刚性适中的高聚物的才会出现强迫高弹性。柔性很大的链在冷却成玻璃态时,分子之间堆砌紧密,链段运动困难,要使链段运动需要很大的外力,甚至超过材料的强度,所以柔性很大的高聚物在玻璃态是脆性的,Tb和Tg很接近。刚性过大的高聚物,虽然链堆砌较松散,但链段不能运动,也不出现32不同的拉伸速率也和改变温度一样影响强迫高弹性因为链段运动是松弛过程,外力的作用使松弛时间下降若外力作用时间越短,链段的松弛跟不上外力作用速率,为使材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂前不发生屈服,表现为脆性断裂若链段运动的松弛时间与外力作用速率相适应,材料在断裂前可发生屈服,出现强迫高弹性,表现为韧性断裂所以,降低温度与提高外力作用速率有同样的效果,这是时-温等效原理在高分子力学行为中的体现。不同的拉伸速率也和改变温度一样影响强迫高弹性因为链段运动是松338.2.2晶态高分子的应力应变曲线第一段,应力随应变线形增加,试样被均匀拉长,伸长率可达百分之几到十几,到Y点后,试样的截面突然变得不均匀,出现一个或几个“细颈”,开始进入第二阶段,细颈与非细颈部分的截面积分别维持不变,细颈部分不断扩展,非细颈部分逐渐缩短,直到试样完全被拉细为止,此时应力几乎不变,应变不断增加。第三阶段是成颈后的试样又被均匀拉伸,直到断裂。比玻璃态高聚物的拉伸曲线具有更明显的应变软化转折,整个曲线可分为三段拉伸后的材料在熔点以下难以回复到原先未取向的状态,只有加热到熔点附近,才能回复到未拉伸状态。因此这种结晶聚合物的大形变,就本质上说也是高弹性的。8.2.2晶态高分子的应力应变曲线第一段,应力随应变线形增34区别:(1)产生冷拉的温度范围不同,玻璃态聚合物的冷拉温度区间是Tb到Tg,而结晶聚合物则为Tg
至Tm;(2)玻璃态聚合物在冷拉过程中聚集态结构的变化比晶态聚合物简单得多,它主要是链段的取向,并不发生相变,而后者尚包含晶面滑移、晶粒的取向及再结晶等相态的变化过程。玻璃态聚合物与结晶聚合物的拉伸比较相似之处:两种拉伸过程均经历弹性变形、屈服、发展大形变以及应变硬化等阶段,其中大形变在室温时都不能自发回复,而加热后则产生回复,故本质上两种拉伸过程造成的大形变都是高弹形变。屈服以后的大形变过程通常称为“冷拉”区别:(1)产生冷拉的温度范围不同,玻璃态聚合物的冷拉温度区35某些由玻璃态塑料和高弹态橡胶组成的高聚物多相体系,表现出特有的应变软化现象,即所谓的“应变诱发塑料-橡胶转变”如SBS试样,当其中的s相和b相的组成比接近1:1时,材料室温下像塑料,第一次拉伸其拉伸行为起先与一般塑料的冷拉现象相似。可是如果移去外力,这种大形变却能迅速基本回复,不像一般塑料强迫高弹性需要加热到Tg或Tm附近才回复8.2.3多相体系的塑料-橡胶转变如果接着进行第二次拉伸,则开始发生大形变所需要的外力比第一次拉伸要小得多,试样也不再发生屈服和成颈过程,而与一般交联橡胶的拉伸过程相似,材料呈现高弹性。经拉伸变为橡胶的试样,如果在室温下放置较长的时间,由于塑料相的重建,又能恢复拉伸前的塑料性质
某些由玻璃态塑料和高弹态橡胶组成的高聚物多相体系,表现出特有36取向态高分子的拉伸行为呈现各向异性。于已取向的晶态高聚物,如果对沿取向方向拉伸,则断裂伸长率极小,不出现细颈现象。应力应变曲线相当于晶态高聚物冷拉后的DB段。若沿垂直于取向方向拉伸,则其拉伸行为与未取向试样相似,最后得到与原取向垂直的新取向聚合物。8.2.4取向高聚物的拉伸行为取向态高分子的拉伸行为呈现各向异性。于已取向的晶态高聚物,如37高分子材料是否出现屈服可从应力(习用应力、工程应力)-应变曲线是否出现极大值作出判断。但由于截面积变化较大,使真应力-应变曲线与习用应力-应变曲线有很大差别,真应力-应变曲线上可能没有极大值,而不能判断屈服点。
拉伸时材料体积不变,伸长比λ=l/l0=1+ε,则试样的截面积A与原始面积A0的关系8.2.5高聚物的屈服判据及影响因素真应力为屈服点是表观应力-应变曲线的极值点与表观应力-应变曲线上屈服点相应的点是真应力-应变曲线上由应变轴上ε=-1处向曲线作切线的切点。这种图解称为considere(康西德雷)作图法,可以作为材料屈服和出现高弹形变(冷拉)的判据。高分子材料是否出现屈服可从应力(习用应力、工程应力)-应变曲38从λ=0点不可能向曲线引切线,没有屈服点,是橡胶态聚合物的情况;
Considère作图法真应力-应变曲线的三种类型从λ=0点可以向曲线引一条切线,得到一个屈服点,是非晶态聚合物的情况;从λ=0点可以向曲线引两条切线,A点是屈服点,出现细颈,然后发生冷拉到B点,(细颈后试样面积不变,应力也不变,从而真应力不变,出现平台),这是结晶态聚合物的情况从λ=0点不可能向曲线引切线,没有屈服点,是橡胶态聚合物的情39屈服原理----受力分析聚合物为什么会屈服?屈服后为什么会产生细颈?韧性聚合物在屈服点时常可看到试样上出现与拉伸方向成约45°角倾斜的剪切滑移变形带,厚度约1µm
,并且逐渐生成对称的细颈屈服原理----受力分析聚合物为什么会屈服?屈服后为什么会产40横截面A0,受到的应力0=F/A0斜截面法向应力剪切应力抗张强度什么面最大?
=0,n=0抗剪强度什么面最大?
=45,135,s=0/2横截面A0,受到的应力0=F/A0斜截面法向应力剪切应41本质上,法向应力与材料的抗拉伸能力有关,而抗拉伸能力极限值主要取决于分子主链的强度(键能)。因此材料在作用下发生破坏时,往往伴随主链的断裂切向应力与材料的抗剪切能力相关,极限值主要取决于分子间内聚力。材料在作用下发生屈服时,往往发生分子链的相对滑移垂直应力下的分子链断裂剪切应力下的分子链滑移本质上,法向应力与材料的抗拉伸能力有关,而抗拉伸能力极限值主42在外力场作用下,材料内部的应力分布与应力变化十分复杂,断裂和屈服都有可能发生,处于相互竞争状态。
★韧性材料拉伸时,斜截面上的最大切应力首先增加到材料的剪切强度,因此材料屈服,并出现与拉伸方向成45°角的剪切滑移变形带。进一步拉伸时,剪切带中由于分子链高度取向,强度提高,暂时不发生进一步的变形。而其边缘则进一步发生剪切变形。同样,在135°的斜截面上也发生剪切变形,因而试样逐渐生成对称的细颈,直至细颈扩展至整个试样。★脆性试样在最大切应力达到剪切强度之前,横截面上的法向正应力已达到材料的拉伸强度,因此试样还来不及屈服就断裂了,而且断面与拉伸方向相垂直。在外力场作用下,材料内部的应力分布与应力变化十分复杂,断裂和438.3高聚物的破坏和强度8.3.1脆性断裂与韧性断裂从实用观点来看,聚合物材料的最大优点之一为其内在的韧性,亦即材料在断裂前能吸收大量能量。但材料内在的韧性并不一定能表现出来,它是会受外在条件而起变化的,例如荷重的方式、温度应变速度、制品形状与尺寸等的改变却会使韧性变坏,甚至会脆性断裂。而材料的脆性断裂,在工程上是必须尽量避免的。8.3高聚物的破坏和强度8.3.1脆性断裂与韧性断裂从实44(1)应力-应变曲线:只发生小形变(<5%),在屈服前发生断裂,-曲线是线性的,是脆性断裂;产生大形变(>5%),在屈服以后发生断裂,-曲线是非线性的,是韧性断裂。(3)断裂面形状:脆性断裂通常断裂面光滑,韧性断裂断裂面粗糙并且有外延形变。材料的断裂是脆性的或韧性的判别方法:(2)断裂能:应力-应变曲线下面积称作断裂能(材料从开始拉伸至破坏所吸收的能量。将冲击强度为2KJ/m2作为临界指标,小于该数值为脆性断裂,否则为韧性断裂。(1)应力-应变曲线:只发生小形变(<5%),在屈服前发生45脆韧转变断裂强度和屈服强度随温度的变化断裂强度和屈服强度随拉伸速率的变化不同温度下的应力应变曲线不同应变速率下的应力应变曲线Tbεt脆韧转变断裂强度和屈服强度随温度的变化断裂强度和屈服强度随拉46银纹现象为聚合物所特有。很多高聚物,尤其是玻璃态透明高聚物(PS、PMMA、PC)在储存过程及使用过程中,由于应力(应力银纹)及环境(环境银纹)的影响,在表面出现像陶瓷的那样,肉眼可见的微细的裂纹,这些裂纹处的折光指数低于聚合物体的折光指数,在两者的界面上发生全反射现象,看上去呈发亮的银色条纹,因此称为银纹8.3.2银纹现象应力银纹:在张应力作用下,在材料的薄弱环节,由于应力集中,产生局部塑性形变,而在材料表面或者内部出现垂直于应力方向长度约100m,宽度约为10m,厚度约1m的微细凹槽或裂纹F银纹现象为聚合物所特有。很多高聚物,尤其是玻璃态透明高聚物(47材料内部因为缺陷或杂质,产生应力集中。受外力作用时,缺陷根部的应力比材料平均受到的应力大得多。应力集中当材料的平均应力还没有达到它的理论强度以前,而缺陷根部的应力首先达到了理论强度的临界值,材料就先从这里开始破坏。对圆形,a=b,t=
0,对椭圆,a增加,b减小,t剧烈提高材料内部因为缺陷或杂质,产生应力集中。受外力作用时,缺陷根部48①裂缝是空的,内部无聚合物;银纹内部并不完全空,含有40%左右的聚合物,仍具有强度和粘弹现象;联系两银纹面的树状或者片状高度取向聚合物称为银纹质银纹与裂缝的区别③银纹具有可逆性,在压力或者玻璃化温度以上退火时可回缩或者愈合,再拉伸时,它会出现。如果再受到拉伸作用,会变成裂缝,最后整个材料断裂。②银纹处的密度低,折光指数低,故在界面上出现全反射现象①裂缝是空的,内部无聚合物;银纹内部并不完全空,含有40%左49应力发白现象:用橡胶增韧的塑料,如HIPS、ABS等在拉伸变形或弯曲变形时会发生发白现象,称为应力发白,这是因为材料受力后出现了裂纹体,发白的区域就是无数裂纹体的总和,由于树脂的密度与裂纹体的密度不同,折光率不同,发白。应力发白和银纹化之间的差别在于银纹带的大小和多少,应力发白是由大量尺寸非常小的银纹聚集而成。银纹与应力发白应力发白现象:用橡胶增韧的塑料,如HIPS、ABS等在拉伸变50张应力作用下的聚合物局部区域的塑性形变。银纹产生的机理在应力集中的区域,分子链将受到较大的应力,存在一个诱发银纹产生的临界应力值,超过临界应力值时,导致沿应力方向高度取向,产生局部的冷拉,由于局部的高度拉伸应变(1000%),造成了很大的横向收缩,这种局部的收缩要大于材料整体的横向收缩,结果在局部性的取向链束或片层间形成一定的空的体积,并在表面上出现凹槽。也可以发生在材料内部形成内银纹。张应力作用下的聚合物局部区域的塑性形变。银纹产生的机理在应力51①银纹的产生可以改善聚合物的力学性能,它在产生时吸收能量,提高了高聚物冲击强度②银纹可发展成裂缝,使材料的使用性能降低。抗冲击塑料:在塑料(PS)中引入橡胶分散相(Tg低,形成两相体系且边界黏着性好),橡胶颗粒在应力的作用下除了本身的形变外,还可以引起颗粒周围的塑料相产生很多银纹,银纹的产生和塑性形变,消耗了大量的冲击能量同时由一个颗粒边缘产生的银纹可为附近的另一个橡胶颗粒中止,防止了银纹发展成裂缝从而抑制了材料破坏起到增韧的作用产生银纹的结果①银纹的产生可以改善聚合物的力学性能,它在产生时吸收能量,52银纹和剪切带一般情况下,材料既有银纹屈服又有剪切屈服剪切带是韧性聚合物在单向拉伸至屈服点时出现的与拉伸方向成约45°角倾斜的剪切滑移变形带,在剪切带内部,高分子链沿外力方向高度取向剪切带内部没有空隙;剪切带的产生与发展吸收了大量能量。同时,由于发生取向硬化,阻止了形变的进一步发展银纹和剪切带一般情况下,材料既有银纹屈服又有剪切屈服剪切带是53环境银纹通常呈不规则排列环境(应力)银纹环境银纹也与材料的内应力有关。当内应力没达到临界应力值时不诱发银纹,但如果存在适合促进聚合物局部发生塑性流动的环境因素时,则可能使材料出现银纹。如:溶剂银纹:溶剂扩散到聚合物表层造成区域性的Tg下降,或导致结晶的形成;非溶剂银纹:非溶剂起到表面活性剂的作用,降低银纹的表面能促进了银纹的形成与发展环境银纹通常呈不规则排列环境(应力)银纹环境银纹也与材料的内54从分子水平上看,聚合物的断裂要破坏分子内的化学键和分子间的范德华力与氢键。内部结构的破坏可归结为以下三种情况:8.3.3高聚物的强度及影响因素强度理论值15000MPa5000MPa氢键500MPa范德华力100MPa从分子水平上看,聚合物的断裂要破坏分子内的化学键和分子间的范55理论计算结果显示化学键断裂所需能量要高于高分子实际强度几十倍,分子间滑脱所需能量也要高于实际强度几倍,只有破坏范德华力或氢键所需能量与高聚物实际强度同数量级为什么材料的实际强度远远低于理论强度(1)材料不可能完全取向,断裂也不可能发生在同一平面上。破坏总是先发生在某些薄弱环节。正常断裂时,首先发生在未取向部分的氢键或范德华力的破坏,随后应力集中于取向的主链上,尽管共价键的强度比分子间作用力大10-20倍,但是由于直接承受外力的取向主链数目少,最终还是要被拉断。(断裂时三种方式兼而有之)(2)Griffithcracktheory断裂理论---应力集中理论计算结果显示化学键断裂所需能量要高于高分子实际强度几十倍56Griffithcracktheory断裂理论为什么材料的实际强度远远低于理论强度?存在缺陷为什么在缺陷处断裂?缺陷处应力集中缺陷处应力多大?Griffiththeory当材料的平均应力还没有达到它的理论强度以前,而缺陷根部的应力首先达到了理论强度的临界值,材料就先从这里开始破坏。对圆形,a=b,t=
0,对椭圆,a增加,b减小,t剧烈提高Griffithcracktheory断裂理论为什么材料57分子量提高,拉伸强度和冲击强度都会提高,但当分子量增加到一定数值后,拉伸强度变化不大,冲击强度继续提高。制备超高分子量PE的目的就是为了提高冲击性能。(1)分子量和分子量分布影响高聚物实际强度的因素分为与材料本身结构有关的和外界条件有关的两类。8.3.3.1分子结构强度是由分子间作用力和化学键决定,分子间作用力具有加和性,随着分子量的增对应力应变曲线的影响而增加,当分子量小时分子间作用力小于化学键,破坏发生在分子间,当分子量大到比化学键大时,破坏发生在化学键上,强度与分子量无关分子量提高,拉伸强度和冲击强度都会提高,但当分子量增加到一定58分子量分布的影响主要考虑低聚物部分。一般认为分子量分布宽时,强度明显下降,这是因为低分子量的物质相当于增塑剂的缘故。分子量分布窄时刚好相反。高分子链刚性增加,分子链易于取向,拉伸强度增加,但冲击强度下降,像主链含有芳杂环结构的聚合物其强度和模量比脂肪族主链高。主链上含有大的侧基,刚性大(2)链刚性(3)链支化支化破坏了链的规整性、结晶度降低,还增加了分子间的距离,分子间力减小,都使拉伸强度降低,但是冲击强度有所提高。分子量分布的影响主要考虑低聚物部分。一般认为分子量分布宽时,59适度的交联可以有效地增加分子链间的联系,使分子链不易发生相对滑移,可以提高强度、模量和冲击强度。但过分交联会造成结晶度降低,取向困难,材料变脆。(4)交联(5)极性和氢键极性基团或氢键的基团使得分子间作用力增大,强度提高。如果极性基团过密或取代基团过大,阻碍着链段的运动,不能实现强迫高弹形变,表现为脆性断裂,因此拉伸强度虽然大了,但材料变脆。
适度的交联可以有效地增加分子链间的联系,使分子链不易发生相对60(6)结晶和取向结晶度提高,对提高拉伸强度、弯曲强度和弹性模量有好处,然而结晶度过高,会导致冲击强度和断裂伸长率降低。对高聚物冲击强度影响更大的是高聚物的球晶结构,球晶越大,冲击强度越低,因此结晶高聚物在成型过程中加入成核剂,使之生成微晶,以提高冲击强度。缓慢冷却或退火处理生成大球晶,会显著降低冲击强度。结晶形态:同一类聚合物,伸直链强度最大,串晶次之,球晶最小。(6)结晶和取向结晶度提高,对提高拉伸强度、弯曲强度和弹性模61取向可以使材料强度提高,在合成纤维、薄膜和板材上很有用处。原因是:①高分子链顺着外力方向排列,使断裂时破坏主价键的比例大大提高,而主价键的强度比范德华力高20倍左右;②取向后弹性模量在拉伸方向与垂直方向的差别,可阻碍裂缝沿拉伸方向纵深扩展。拉伸前后,橡皮的切口发展就是很好的例子注意:当外力与取向方向平行,强度高,垂直,强度低。③拉伸过程中体系中的宏观不均匀性沿拉伸方向自动匀化和消除,缺陷的消除最终有利于材料强度的提高取向可以使材料强度提高,在合成纤维、薄膜和板材上很有用处。原62缺陷是造成聚合物实际强度与理论强度之间巨大差别的主要原因。缺陷包括裂缝、空隙、缺口、银纹和杂质等,缺陷附近局部范围内的应力会急剧地增加,远远超过应力平均值,产生所谓应力集中,它们会成为材料破坏的薄弱环节,严重地降低材料的强度,各种缺陷在高聚物的成型加工过程中是普遍存在的。如生产中混进的杂质,或在成型过程中,由于制件表里冷却速度不同,在制件内部产生内应力,进而形成细小的银纹,甚至于裂缝,在制件表皮上将形成龟裂等8.3.3.2缺陷或应力集中物缺陷的形状不同,应力集中系数也不同,锐口的系数比钝口要大得多,很容易成为材料破坏的集中物,因此一般制品的设计总是尽量避免有尖锐的转角,而是将制品的转弯处作成圆弧状缺陷是造成聚合物实际强度与理论强度之间巨大差别的主要原因。缺63增塑剂对高聚物有稀释作用,减小了高分子链之间的作用力,导致拉伸强度降低;另一方面由于增塑剂使链段运动增强,导致材料冲击强度提高。(1)增塑剂8.3.3.3添加剂(2)填料填料的影响比较复杂,有些稀释性填料(惰性填料)的加入虽然降低了成本,但强度也降低,有些填料的加入可显著提高强度,称为活性填料,但其对材料的增强效果与填料本身的强度及填料与高聚物之间的亲和力有关。增塑剂对高聚物有稀释作用,减小了高分子链之间的作用力,导致拉64①粉状填料木粉加入酚醛树脂可以不降低拉伸强度而提高冲击强度;橡胶工业中大量采用碳黑、轻质二氧化硅、碳酸镁、和氧化锌等增强;在热塑性塑料中添加少量石墨、二硫化钼等粉末润滑剂后,可以改善塑料的摩擦和磨损性能,制备各种耐磨和自润滑零件;以大量轻质硫酸钙加入PE、PP、EVA等热塑性塑料中,并进行发泡,制成钙塑材料,兼有塑料和木材、纸张的性能,用来生产各种人造木材和纸。橡胶+碳黑增强机理:活性粒子吸附大分子,形成链间物理交联,活性粒子起物理交联点的作用。①粉状填料木粉加入酚醛树脂可以不降低拉伸强度而提高冲击强度;65②纤维状填料棉,麻,丝,等天然纤维,拉伸强度高且价格低廉的玻璃纤维,具有高模量、耐热、耐磨、耐腐蚀等优异性能的特种纤维--碳纤维、石墨纤维、硼纤维、超细金属纤维、晶须纤维增强机理:纤维作为骨架帮助基体承担载荷Carbonfiber③纳米填料纳米填料的小尺寸效应,使其有别于传统填料-具有独特效果②纤维状填料棉,麻,丝,等天然纤维,拉伸强度高且价格低廉的玻66共聚和共混都是高聚物改性的好方法,可以综合两种以上聚合物的性能。8.3.3.4共聚和共混共混更为简便。共混中常用的是橡胶增韧塑料。橡胶以微粒分散于塑料连续相中,由于塑料连续相的存在,使材料的弹性模量和硬度不会有明显的下降,而分散的橡胶微粒则作为应力集中物,当材料受到冲击时,引发大量的裂纹,从而吸收大量的冲击能量。同时,由于大量裂纹之间应力场的相互干扰,又可阻止裂纹的进一步发展,因此大大提高了材料的韧性(积极利用裂纹和银纹)。例如PS是脆性的,如果引入丙烯腈进行共聚,所得共聚物的拉伸和冲击强度都提高了。共聚和共混都是高聚物改性的好方法,可以综合两种以上聚合物的性67高分子链运动的特点,有明显的时间、温度依赖性-松弛特性,所以外力作用速度和温度对强度有明显的影响。温度:在恒定的应变速率下,低温脆性形式向高温韧性形式转变当时间一定时,升高温度,链段活动容易,屈服应力降低,屈服强度低。相反降低温度会使材料的链段运动能力降低,材料在更高的外力下发生脆性断裂8.3.3.5外力作用速度和温度高分子链运动的特点,有明显的时间、温度依赖性-松弛特性,所以68拉伸速率:在恒定温度下,应变速率上伸,表现为脆性形式;应变速率下降,表现为韧性形式拉伸速度提高,链段运动跟不上外力的作用,为使材料屈服,必须提高外力,即材料的屈服强度提高了;进一步提高拉伸速度,材料终将在更高的应力下发生脆性断裂。拉伸速率不同应变速率下聚合物的断裂模式8.3.3.5高分子单链的力学性质拉伸速率:在恒定温度下,应变速率上伸,表现为脆性形式;应变速698.4高分子的力学松弛-粘弹性在外力作用下,不同材料具有不同的应变响应8.4高分子的力学松弛-粘弹性在外力作用下,不同材料具有不同70理想弹性体形变对时间不存在依赖性理想弹性体受外力后,应变在加力的瞬时达到平衡值,除去应力时,应变瞬时回复。虎克定律弹性模量E理想弹性体形变对时间不存在依赖性理想弹性体受外力后,应变在加71外力除去后完全不回复牛顿定律粘度理想粘性体形变与时间有关理想粘性体受外力后,形变是随时间线性发展的,当除去外力时形变不可回复。外力除去后完全不回复牛顿定律粘度理想粘性体形变与时间有关72弹性与粘性比较弹性
粘性能量储存
能量耗散形变回复
永久形变虎克固体
牛顿流体模量与时间无关
模量与时间有关E(,,T)
E(,,T,t)弹性与粘性比较弹性 粘性能量储存 73高聚物粘弹性高聚物材料表现出弹性和粘性的结合,在实际形变过程中,粘性与弹性总是共存的,聚合物的这种性能称为粘弹性。线性粘弹性:这种粘弹性可简单地看作符合胡克定律的线性弹性行为和符合牛顿定律的线性粘性行为的组合。否则为非线性粘弹性。本节讨论限于线性粘弹性的范围。高聚物粘弹性高聚物材料表现出弹性和粘性的结合,在实际形变过程74静态粘弹性:是指在固定的应力(或应变)下形变(或应力)随时间延长而发展的性质。典型的表现是蠕变和应力松弛。(1)蠕变:在一定温度、一定应力作用下,材料的形变随时间的延长而增加的现象。(2)应力松弛:在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象。动态粘弹性:是指在应力周期性变化作用下聚合物的力学行为,也称为动态力学性质。有滞后现象和力学损耗等。静态粘弹性:是指在固定的应力(或应变)下形变(或应力)随时间758.4.1.1蠕变蠕变:在一定温度、一定应力作用下,材料的形变随时间的延长而增加的现象。蠕变过程包括三种形变8.4.1蠕变及应力松弛①普弹形变:高分子材料受到外力作用时,分子链内部键长和键角立刻发生变化,形变量很小,外力除去后,普弹形变立刻完全恢复,与时间无关8.4.1.1蠕变蠕变:在一定温度、一定应力作用下,材料的形76②高弹形变(推迟弹性形变):聚合物受力时,高分子链通过链段运动产生的形变,形变量比普弹形变大得多,但不是瞬间完成,形变与时间相关。当外力除去后,高弹形变逐渐回复③粘性流动:受力时发生分子链的相对位移,外力除去后粘性流动不能回复,是不可逆形变总应变:②高弹形变(推迟弹性形变):聚合物受力时,高分子链通过链段运77线形聚合物的蠕变及回复曲线蠕变与温度和外力有关。温度过低,外力太小,蠕变很小而且很慢,短时间内不易察觉;温度过高、外力过大,形变发展很快,也觉察不到。在适当外力作用下,通常在高聚物Tg以上不远,链段在外力下可以运动,但运动时受到的内摩擦力较大,只能缓慢运动,可观察到比较明显的蠕变。线形聚合物的蠕变及回复曲线蠕变与温度和外力有关。温度过低,外78各种高聚物在室温下的蠕变现象很不相同,主链含芳杂环的刚性链高聚物具有较高的抗蠕变性能,广泛用作工程塑料,硬PVC具有良好的抗腐蚀性能,但容易蠕变,使用时必须加支架以防止蠕变。PTFE是塑料中摩擦系数最小的,但蠕变现象严重,一般不能作成机械零件,但却是很好的密封材料。橡胶采用硫化交联的方法防止由蠕变产生分子间滑移而造成的不可逆形变。线形聚合物形变随时间增加而增大,蠕变不能完全回复交联聚合物形变随时间增加而增大,趋于某一值,蠕变可以完全回复各种高聚物在室温下的蠕变现象很不相同,主链含芳杂环的刚性链高798.4.1.2应力松弛所谓应力松弛,就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐衰减的现象。τ—松弛时间未交联的橡胶应力松弛较快,而且应力能完全松弛到零,但交联的橡胶,不能完全松弛到零。这种现象也在日常生活中能观察到,例如橡胶松紧带开始使用时感觉比较紧,用过一段时间后越来越松。也就是说,实现同样的形变量,所需的力越来越少。8.4.1.2应力松弛所谓应力松弛,就是在固定的温度和形变下80应力松弛也反映了高聚物内部的分子运动情况:拉伸时张力迅速作用使缠绕的分子链伸长,但这种伸直的构象时不平衡的,由于热运动分子链会重新卷曲,但形变量被固定不变,于是链可能解缠结而转入新的无规卷曲的平衡态,于是应力松弛为零。交联聚合物不能解缠结,因而应力不能松弛到零应力松弛也反映了高聚物内部的分子运动情况:拉伸时张力迅速作用81应力松弛也与温度有关。温度过高,链段运动受到内摩擦力小,应力很快松驰掉了,觉察不到。例如常温下的橡胶。温度过低,链段运动受到内摩擦力很大,应力松驰极慢,短时间也不易觉察。例如常温下的塑料。只有在Tg附近,聚合物的应力松驰最为明显。例如软PVC丝,用它来缚物,开始扎得很紧,后来就会慢慢变松,就是应力松弛比较明显的例子。8.4.1动态粘弹性高分子材料在周期性变化应力下的力学行为称为动态粘弹性或动态力学松弛。例如轮胎,传动皮带,齿轮,消振器等,它们都是在交变力作用的场合使用的。应力松弛也与温度有关。温度过高,链段运动受到内摩擦力小,应力82受到周期性正弦变化应力理想虎克弹性体在交变力作用下的力学响应产生的应变为应力与应变之间完全同步,没有任何位相差外力所作的功完全以弹性能形式存储起来,然后又全部释放变成动能,没有能量的损耗8.4.2.1滞后现象受到周期性正弦变化应力理想虎克弹性体在交变力作用下的力学响应83应变滞后应力/2位相,以形变形式将外力所作的功全部损耗为热。理想粘性体在交变力作用下的力学响应应变滞后应力/2位相,理想粘性体在交变力作用下的力学响应84力学响应介于弹性与粘性之间,应变落后于应力一个相位角,0
/2高分子材料在交变应力作用下,应变的变化落后于应力的变化的现象称为滞后现象高分子材料(粘弹材料)在交变力作用下的力学响应滞后现象产生的原因是由于链段在运动时受到内摩擦力作用的结果。当外力变化时,链段的运动还跟不上外力的变化,形变落后于应力,有一个相位差。链段运动越困难,越跟不上外力的变化,相位差就越大,内耗越严重。力学响应介于弹性与粘性之间,应变落后于应力一个相位角,085Comparing0
/20p/2p3p/22pwtStressorstraindComparing0/20p/2p3p/2286(1)高分子材料的滞后现象与其化学结构有关:刚性分子滞后现象小,柔性分子现象严重。(2)滞后现象与外力作用频率有关(温度恒定)
:外力作用频率很小时(相当于高弹态)
,链段完全跟得上交变应力的变化,滞后现象不明显;外力作用频率很大时(相当于玻璃态)
,链段完全跟不上外力的变化,滞后现象也不明显;只有外力作用的频率不太高时,链段可以运动但又跟不上应力的变化,才出现较明显滞后现象;影响滞后现象的因素(1)高分子材料的滞后现象与其化学结构有关:刚性分子滞后现象87T≈Tf:向粘流态过度,分子间的相互滑移,内摩擦大,内耗急剧增加,tgδ大(3)滞后现象与温度有关(固定频率):T<Tg:
形变主要由键长、键角的变化引起,形变速率快,几乎完全跟得上应力的变化,tgδ小Tg上下几十度范围内,链段开始运动,而体系粘度很大,链段运动很难,内摩擦阻力大,形变显著落后于应力的变化,tgδ大(转变区)T>Tg:链段运动较自由、容易,受力时形变大,tgδ小,内摩擦阻力大于玻璃态。由(2)、(3)知:增加频率与降低温度对滞后现象有相同的影响T≈Tf:向粘流态过度,分子间的相互滑移,内摩擦大,内耗急剧888.4.2.2力学损耗粘弹性材料在交变应力作用下,应变的变化落后于应力的变化,发生滞后现象,在循环变化过程中要消耗能量,称为力学损耗或内耗。一般将热损耗掉的的能量和最大贮存能量之比值称为力学损耗值,称为损耗角外力对体系所做的功:一方面用来改变链段的构象(产生形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量。由于产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。8.4.2.2力学损耗粘弹性材料在交变应力作用下,应变的变化89对于应变完全跟上应力的拉伸回缩过程来说,回缩与拉伸曲线是重合的,能量损耗为零(理想弹性体)高分子材料,粘弹体,应变跟不上应力的变化。拉伸时,应变达不到平衡应变值,拉伸曲线在平衡曲线左边;回缩时,应变大于平衡应变值,回缩曲线在平衡曲线右边。在正弦交变应力的作用下,拉伸-回缩两条曲线构成的闭合曲线称为“滞后圈”,其面积等于单位体积橡胶试样在每一循环中消耗的功。此圈越大,力学损耗越大。对于应变完全跟上应力的拉伸回缩过程来说,回缩与拉伸曲线是重合90——所有能量都以弹性能量的形式存储起来,没有热耗散If滞后的相角决定内耗——所有能量都耗散掉了,转变成热量。If——所有能量都以弹性能量的形式存储起来,没有热耗散If滞后的91(1)高分子材料的内耗与其化学结构有关:刚性分子内耗大,柔性分子内耗小(2)滞后现象与外力作用频率有关(温度恒定)
:频率适中时,内耗出现极大值影响力学损耗的因素(3)滞后现象与温度有关(固定频率):Tg上下几十度范围内,tgδ大内耗主要存在于交变场中的橡胶制品中,塑料处Tg、Tm以下,损耗小(1)高分子材料的内耗与其化学结构有关:刚性分子内耗大,柔性92应用例1:对于作轮胎的橡胶,则希望它有最小的力学损耗才好(内耗使部分机械能转化为热能,材料发热,使其过早老化)。①顺丁胶:内耗小,结构简单,没有侧基,链段运动的内摩擦较小②丁苯胶:内耗大,结构含有较大刚性的苯基,链段运动的内摩擦较大③丁晴胶:内耗大,结构含有极性较强的氰基,链段运动的内摩擦较大④丁基胶:内耗比上面几种都大,侧基数目多,链段运动的内摩擦更大例2:对于作为防震材料,要求在常温附近有较大的力学损耗(吸收振动能并转化为热能);对于隔音材料和吸音材料,要求在音频范围内有较大的力学损耗(当然也不能内耗太大,否则发热过多,材料易于热氧化)应用例1:对于作轮胎的橡胶,则希望它有最小的力学损耗才好(内938.4.3复数模量应变变化比应力落后一个相位角δ,σ=σ0sin(ωt+δ)应力由两部分组成,一部分与应变同相位,峰值为σ0cosδ,是弹性形变的主动力(储能),另一部分对应的是粘性形变(能量损耗),与应变有90°的相位差,峰值为σ0sinδ。应力与应变的关系,可用模量表达,
E=σ(t)/ε(t)应力、应变、模量都可用复数形式表示:材料受到正弦交变应力作用时,假设应变为ε=
e0sinωt展开后,σ=σ0cosδsinωt+σ0sinδsin(ωt+π/2)8.4.3复数模量应变变化比应力落后一个相位角δ,σ=σ094E'为实数模量或称储能模量,它反映材料形变过程由于弹性形变而储存的能量。
E"为虚数模量或称损耗模量,它反映材料形变过程以热损耗的能量。tgδ称作损耗角正切,它表征材料在交变应力作用下每一形变周期内以热的形式消耗的能量与最大的弹性储能之比。
每一循环中消耗的功E'为实数模量或称储能模量,它反映材料形变过程由于弹性形变而95E",tgδ这两根曲线在ω很小或很大时几乎为0;说明,交变应力频率太小时,内耗很小,当交变应力频率太大时,内耗也很小。只有在某一温度下(Tg上下几十度范围内),链段能充分运动,但又跟不上应力变化,滞后现象就比较严重,内耗大动态粘弹性的温度谱和频率谱只有当为某一特定范围时(ωτ=1),链段又跟上又跟不上外力时,才发生滞后,产生内耗,弹性储能转化为热能而损耗掉,曲线则表现出很大的能量吸收E",tgδ这两根曲线在ω很小或很大时几乎为0;说明,交变应96如一个符合虎克定律的弹簧能很好的描述理想弹性体:一个具有一块平板浸没在一个充满粘度为,符合牛顿流动定律的流体的小壶组成的粘壶,可以用来描述理想流体的力学行为.聚合物的粘弹性,如应力松弛,蠕变可以用弹簧(模拟纯弹性形变)与粘壶(模拟纯粘性形变)组合的模型进行近似的定量描述。8.5粘弹性的描述如一个符合虎克定律的弹簧能很好的描述理想弹性体:一个具有一块978.5.1粘弹性的力学模型σ1=Eε1如果以恒定的σ作用于模型,弹簧与粘壶受力相同:σ=σ1=σ2;形变应为两者之和:ε=ε1+ε2其应变速率:弹簧:粘壶:Maxwell运动方程8.5.1.1Maxwell模型8.5.1粘弹性的力学模型σ1=Eε1如果以恒定的σ作用于模98模拟应力松弛:根据定义:ε=常数(恒应变下),dε/dt=0分离变量:应力松弛方程t=τ时,σ(t)=σ0/e
τ的物理意义为应力松弛到σ0的1/e(0.368倍)的时间--松弛时间
t→∞,σ(t)→0
,应力完全松弛令松弛时间τ=η/Et=0,σ=σ0
时积分模拟应力松弛:根据定义:ε=常数(恒应变下),dε/dt=099Maxwell模型也可用于动态力学行为分析从上式可看出,应变落后于应力δ位相。对于理想弹性体,δ=0;对于理想粘性液体,δ=π/2;对于粘弹体0<δ<π/2代入Maxwell模型也可用于动态力学行为分析从上式可看出,应变100损耗模量损耗角正切动态模量(贮能模量)理论曲线与实际曲线相比,E′、E"与实际相符,但tanδ不符。麦克斯韦尔模型可以模拟应力松弛过程,但不能用来模拟交联高聚物的应力松弛,同时不能模拟蠕变过程。损耗模量损耗角正切动态模量(贮能模量)理论曲线与实际曲线相比101推迟弹性方程8.5.1.2
Voigt(Kelvin)
模型由虎克弹簧和牛顿粘壶并联:应力由两个元件共同承担,始终满足:σ=σ1+σ2,模拟蠕变(高弹、推迟弹性)现象形变量相同ε=ε1=ε2,蠕变过程,应力恒定
σ
(t)=σ0积分τ=η/E蠕变回复方程τ—推迟时间,应变达到极大值的(1-1/e)倍(0.632倍)时所需的时间。推迟弹性方程8.5.1.2Voigt(Kelvin)模型102Voigt(Kelvin)模型也可用于动态力学行为分析式中tanδ=ωτ,也可看出,应变落后于应力δ位相复数模量与实际不符,改为复数柔量D*D′=D/(1+ω2τ2)D"=Dωτ/(1+ω2τ2)与实际相比,D′、D"与实际相符,但tanδ不符Voigt(Kelvin)模型可以模拟蠕变过程,但不能用来模拟应力松弛过程。Voigt(Kelvin)模型也可用于动态力学行为分析式中t103①由分子内部键长,键角改变引起的普弹形变,它是瞬间完成的,与时间无关,所以可用一个硬弹簧来模拟。②由链段的伸展,蜷曲引起的高弹形变随时间而变化,可用弹簧与粘壶并联来模拟③高分子本身相互滑移引起的粘性流动,这种形变随时间线性变化,可用粘壶来模拟蠕变方程8.5.1.3
四元件模型-完整的蠕变过程①由分子内部键长,键角改变引起的普弹形变,它是瞬间完成的,与104单一模型表现出的是单一松弛行为,实际高聚物由于结构的多层次性和运动单元的多重性,不同的单元有不同的松弛时间,是一个宽分布的连续谱。要完善地反映出高聚物的粘弹行为,须采用多元件组合模型来模拟8.5.1.4多元件模型和松弛时间谱广义Maxwell模型取,任意多个Maxwell单元并联而成广义的Voigt模型,若干个Voigt模型串联起来单一模型表现出的是单一松弛行为,实际高聚物由于结构的多层次性1058.5.2
Boltzmann叠加原理Boltzmann叠加原理是高聚物粘弹性的一个简单但又非常重要的原理,这个原理指出高聚物的力学松弛行为是其整个历史上诸松弛过程的线性加和的结果。对于蠕变过程,每个负荷对高聚物的变形的贡献是独立的,总的蠕变是各个负荷引起的蠕变的线性加和对于应力松弛,每个应变对高聚物的应力松弛的贡献也是独立的,高聚物的总应力等于历史上诸应变引起的应力松弛过程的线性加和。t=0时,加载应力0的蠕变:ε(t)=σ0D(t)t=1时,加载应力1的蠕变:ε(t)=σ0D(t-1)总的形变是两者的线性加和。ε(t)=σ0D(t)+σ0D(t-1)利用这个原理,可以根据有限的实验数据来预测高聚物在很宽的负荷范围内的力学性质。8.5.2Boltzmann叠加原理Boltzmann叠加106高聚物分子运动为松弛过程,同时具有对时间和温度的依赖性。同一个力学松弛现象,既可以在较高温度下在较短的时间内观察到,也可以在较低温度下在较长时间观察到。8.6粘弹性的温度、时间依赖性及时温等效因此升高温度与延长观察时间对高分子运动是等效的,对高聚物的粘弹行为也是等效的。这个等效性可以借助于一个转换因子αT来实现,即借助于转换因子可以将在某一温度下测定的力学数据转变成另一温度下的力学数据。这就是时温等效原理。实验发现,很多非晶态高分子,在不同温度下获得的粘弹性数据,包括蠕变、应力松驰、动态力学实验,均可沿时间轴平移叠合在一起。高聚物分子运动为松弛过程,同时具有对时间和温度的依赖性。同一107将T1曲线lgt沿坐标移lgaT,即与T2线重叠,D(T1,t1)=D(T2,t2=t1/aT)蠕变过程:蠕变柔量动态力学实验:力学损耗动态下,降低频率与延长时间等效(升高温度);增加频率与缩短时间等效(降低温度)将T1曲线lgt沿坐标移lgaT,即与T2线重叠,D(T1108c1=17.44,c2=51.6当T0=Tg+50℃为参考温度时,c1=8.86,c2=101.6当T0=Tg为参考温度时WLF方程c1=17.44,c2=51.6当T0=Tg+50℃为参考109时温等效原理的意义:时温等效原理具有重要的实用意义,利用它可以对不同温度或不同频率下测得的高聚物力学性质进行比较或换算,从而得到一些实际上无法从直接实验测量得到的结果。例如要得到低温下天然橡胶的应力松弛行为,由于温度太低,应力松弛进行得很慢,要得到完整的数据,可能需要几个世纪甚至更长时间,这是不可能的。利用该原理可在高温条件下短期内完成,然后将数据换算成所需要低温下的数据。或在室温下几十万分之一秒完成的应力松驰,可在低温条件下几小时完成。时温等效原理的意义:时温等效原理具有重要的实用意义,利用它可110最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件111静态黏弹性-高温蠕变仪和应力松弛仪。8.7粘弹性的研究方法及应用动态粘弹性--自由振动法:扭摆和扭辫法;强迫共振法:振簧法;强迫振动非共振法:粘弹普仪;声波传播法
8.7.1粘弹性的研究方法8.7.1.1高温蠕变和应力松弛法高温蠕变是在恒温恒负荷下检测试样的应变随时间的变化。应力松弛是在恒温恒应变条件下测定应力随时间的变化。静态黏弹性-高温蠕变仪和应力松弛仪。8.7粘弹性的研究方法及112扭摆和扭辫法属于自由衰减振动测试法8.7.1.2扭摆和扭辫法测定原理:高分子材料一端固定,另一端与一个自由振动的惯性体相连接。当外力使惯性体扭转一个角度时,试样受到一定的扭转变形,外力去处之后,由于试样的弹性回复力,使惯性体开始作扭转自由振动。由于高聚物的弹性回复力,使惯性体开始作扭转自由振动。由于高聚物的力学损耗,体系的弹性能逐渐转变为热,振动的振幅随时间而衰减扭辫法:基本步骤与扭摆法相同;试样与惰性载体复合,截面不规则扭摆和扭辫法属于自由衰减振动测试法8.7.1.2扭摆和扭辫法113强迫试样在一定频率范围内的恒幅力作用下发生振动,测定共振曲线,从共振曲线上的共振频率与共振峰宽度得到储能模量与损耗因子的方法。8.7.1.3强迫共振法--振簧法强迫共振法有很多形式,如振簧法,悬臂梁法等等。振簧法将纤维状或片状试样的一端固定在电磁振动系统中,使其强迫做横向振动。驱动振动的音频信号源的频率可以连续调节,此振动将带动试样发生同频率的振动。当频率改变到试样的自然频率相同时,引起试样的共振,试样自由端振动将出现极大值共振峰宽度:共振曲线上处所对应的两个频率之差储能模量正比于损耗因子正比于强迫试样在一定频率范围内的恒幅力作用下发生振动,测定共振曲线114指强迫试样以设定频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,按定义直接计算储能模量、损耗因子等参数8.7.1.4受迫振动非共振法—动态粘弹仪8.7.2动态力学分析的应用①材料玻璃化转变温度的测定及评价材料的短期耐热性和耐寒性--材料低温损耗峰的位置和强度,若存在明显的低温损耗峰,则在对应温度以上具有良好的冲击韧性指强迫试样以设定频率振动,测定试样在振动中的应力与应变幅值以115②动态力学温度谱和频率谱为选择阻尼、减震材料提供依据—在飞机、建筑等结构中,为了吸震、防震或吸音、隔音都要选用阻尼材料。理想的阻尼材料在整个工作温度与频率范围内要有较高的力学内耗
一种高温阻尼橡胶(a)和一种高温阻尼合金(b)的DMTA温度谱
②动态力学温度谱和频率谱为选择阻尼、减震材料提供依据—在飞机116③测定共混物的Tg和判断体系的相容性③测定共混物的Tg和判断体系的相容性117④交联度对Tg及转变区宽窄的影响交联度增加,高聚物模量增加,转变峰变宽,玻璃化转变温度提高。当交联度较高时,模量和内耗几乎不变。说明高聚物在分解温度以下没有玻璃化转变。交联度3>2>1④交联度对Tg及转变区宽窄的影响交联度增加,高聚物模量增加,118最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件1198高聚物的力学性质1高聚物的机械强度和粘弹性8高聚物的力学性质1高聚物的机械强度和粘弹性120聚合物的力学性能指的是其受力后的响应,如形变大小、形变的可逆性及抗破损性能等。聚合物的力学性能指的是其受力后的响应,如形变大小、形变的可逆121最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件122最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件123最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件124最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件125最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件126最新8高聚物的力学性质1高聚物的机械强度和粘弹性课件127(3)均匀压缩压缩应变体积模量K材料受到均匀压力压缩时发生体积收缩压缩应变体积模量的倒数是可压缩度B(3)均匀压缩压缩应变体积模量K材料受到均匀压力压缩时发生体128泊松比:在拉伸实验中,材料横向应变与纵向应变之比值的负数对于大多数材料来说,拉伸时有体积变化,一般会发生体积膨胀,泊松比在0.2-0.5之间。橡胶和小分子的泊松比接近于0.5,接近于理想不可压缩体。8.1.1.2泊松比泊松比:在拉伸实验中,材料横向应变与纵向应变之比值的负数对129三种基本变形的弹性模量分别称为杨氏模量、剪切模量和体积模量,分别计为E、G、B,外加泊松比,构成描述材料力学性质的四个主要参数。各向同性材料,四个参数只有两个是独立的对于各向异性材料来说,情况要复杂得多,通常至少有5-6个弹性模量,有的多达36项。假若材料是不可压缩的,即无论施加多大的流体静压P,体积应变始终为零。即相当于K=∞。
三种基本变形的弹性模量分别称为杨氏模量、剪切模量和体积模量,130弯曲:对材料施加一弯曲力矩,使材料发生弯曲。主要有一点弯曲和三点弯曲材料受力方式除以上三种基本类型外,还有弯曲和扭转扭转:对材料施加扭转力矩弯曲:对材料施加一弯曲力矩,使材料发生弯曲。主要有一点弯曲和131机械强度是材料所能承受的最大应力,表征了材料的受力极限,在实际应用中具有重要的意义。包括抗张强度、冲击强度、弯曲强度、压缩强度、硬度、疲劳等。拉伸强度是衡量材料抵抗拉伸破坏的能力,也称抗张强度8.1.2高聚物材料机械强度评价指标指标8.1.2.1拉伸强度与压缩强度在规定试验温度、湿度和实验速度下,在标准试样上沿轴向施加拉伸负荷,直至试样被拉断。试样断裂前所受的最大负荷P与试样横截面积之比为抗张强度tt=Fmax/b•d机械强度是材料所能承受的最大应力,表征了材料的受力极限,在实132但要注意试样宽度与厚度在拉伸过程中是随试样拉伸而逐渐减小的,由于达到最大载荷时的b、d值的测量很不方便,工程上一般采用起始尺寸来计算拉伸强度。E=(ΔF/bd)/(Δl/l0)式中ΔF为变形较小时的载荷类似,如果向试样施加单向压缩载荷,则侧得压缩强度和压缩模量。理论上二者应相等,实际上压缩模量通常稍大于拉伸模量。由于整个拉伸过程中,高聚物的应力和应变的关系并非线性的,只要当变形很小时,高聚物才可视为虎克弹性体,因此拉伸模量(杨氏模量)通常由拉伸初始阶段的应力应变计算但要注意试样宽度与厚度在拉伸过程中是随试样拉伸而逐渐减小的,133也称抗弯强度或挠曲强度。抗弯强度的测定是在规定的试验条件下,对标准试样施加一静止弯曲力矩,直至试样断裂。设试验过程中最大的负荷为P,则抗弯强度f为:f=1.5Pl0/bd28.1.2.2弯曲强度也称抗弯强度或挠曲强度。抗弯强度的测定是在规定的试验条件下,134冲击强度也称抗冲强度,是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位截面积所吸收的能量。试样断裂时吸收的能量等于断裂时试样所消耗的功W,因此冲击强度为:冲击强度的测试方法很多,应用较广的有摆锤式冲击试验、落重式冲击试验和高速拉伸等。B、d为冲断试样宽度与厚度i=
W/bd8.1.2.3冲击强度冲击强度也称抗冲强度,是衡量材料韧性的一种强度指标,表征材料135摆锤式冲击试验是让重锤摆动冲击标准试样,测量摆锤冲断试样所消耗的功,试样的安放方式有简支梁式(Charpy卡皮式试验)和悬臂梁式(Izod伊伍德式试验)。Charpy或Izod试验用试样均可用带缺口的和不带缺口的两种。采用带缺口的试样是为了使缺口处试样的截面积大大减小,受冲击时,试样断裂一定发生于这一薄弱处,所有的冲击能量都能在这局部被吸收,提高了试验的准确性,但在计算冲击强度时,试样的厚度指缺口处的剩余厚度。试样两端支撑着,摆锤冲击试样的中部试样一端固定,摆锤冲击自由端摆锤式冲击试验是让重锤摆动冲击标准试样,测量摆锤冲断试样所消136落重式冲击试验是让球状或镖状标准重物从已知高度落到板状或片状试样上,试验下落重物的冲击刚刚足以使试样产生裂痕或破坏的条件。也可以改变质量或高度使mgh正好等于冲断试样所需要的能量而得到试样的断裂能。通常为保证冲击速度不变,以固定高度、改变质量的方法来获得试样所需的断裂能。它的冲击速度由自由落重的高度(h)决定。质量为mg(m为重物质量,g为重力加速度)从h高度下落冲击试样,试样的断裂破坏能即为势能mgh减去冲断试样后落重的剩余动能落重式冲击试验是让球状或镖状标准重物从已知高度落到板状或片状137在拉伸试验中,当拉伸速度足够高时,拉断试样所做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 8642-2025热喷涂抗拉结合强度的测定
- 全国农机安全培训课件
- 单兵话术作战指南
- 销售实战沟通技巧
- 中医科医患关系防范指南
- 近代医患关系和谐典范
- 克罗地亚介绍
- 光纤生产培训课件模板图
- 医院医患关系岗位介绍
- 光影人物介绍
- 2025年夏季山东高中学业水平合格考地理试卷试题(含答案)
- 爆破备案工作报告
- 企业现金流管理课件
- 旧电梯拆除合同协议书
- 燃气行业工作危害分析(JHA+LEC)评价记录表
- 山东省济南市钢城区(五四学制)2024-2025学年八年级上学期1月期末考试数学试卷
- 【苏州工学院智能建造研究院】2025中国低空经济产业链全面解析报告
- 个人与团队管理-形考任务3(客观题10分)-国开-参考资料
- 车间现场管理岗位职责模版(2篇)
- 中国当代文学专题-003-国开机考复习资料
- 2024届上海市松江区初三一模数学试题及答案
评论
0/150
提交评论