




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章刚体定轴转动1优选课堂第六章刚体定轴转动1优选课堂复习质点的角动量力矩角动量定理角动量守恒定律若2优选课堂复习质点的角动量力矩角动量定理角动量守恒定律若2优选课本章主要内容1刚体的运动2刚体的角动量3刚体受到的力矩4刚体定轴转动定律5刚体的动能定理6刚体的角动量守恒定律3优选课堂本章主要内容1刚体的运动3优选课堂6.1刚体的运动与描述
质点的运动只代表物体的平动,物体实际上是有形状、大小的,它可以平动、转动,甚至更复杂的运动。因此,对于机械运动的研究,只限于质点的情况是不够的。
刚体是一种特殊的质点系,无论在多大外力作用下,系统内任意两质点间的距离始终保持不变。即物体的形状、大小都不变的固体称为刚体(rigidbody
)。
刚体考虑了物体的形状和大小,但不考虑它的形变,刚体同质点一样,也是一个理想化模型。4优选课堂6.1刚体的运动与描述质点的运动只代表一、刚体的运动
固联在刚体上的任一条直线,在各个时刻的位置始终保持彼此平行的运动,叫做刚体的平动。1.平动
刚才的动画演示了一个圆柱体的平动。在运动过程中,我们看到,刚体中所有质点的位移都是相同的。
而且在任何时刻,各个质点的速度和加速度也都相同。这时我们可以选取刚体上任一点的运动来代表刚体的运动。5优选课堂一、刚体的运动固联在刚体上的任一条直线,在各2.转动
如果刚体上所有各点绕同一直线(转轴)作圆周运动,则称为刚体的转动。
转动时,轴外各点在同一时间间隔内走过的弧长虽然不一样,但角位移全同。6优选课堂2.转动如果刚体上所有各点绕同一直线(转轴)固定转轴:转轴不随时间变化——刚体定轴转动瞬时转轴:转轴随时间变化——一般转动7优选课堂固定转轴:转轴不随时间变化——刚体定轴转动7优选课堂3.刚体的一般运动
例如,一个车轮的滚动,可以分解为车轮随着转轴的平动和整个车轮绕转轴的转动。
在研究刚体一般运动时,我们一般将它分解为质心的平动(应用质心运动定理)和刚体绕过质心轴的转动(应用转动定律)。8优选课堂3.刚体的一般运动例如,一个车轮的滚动,可一个汽车轮子在地上的滚动A、B、C、…各点的运动都不相同绕过o轴的转动oABCoo轮子的平动ABCoABCoABABCCo刚体的运动=平动+转动平动:刚体上所有点运动状态都相同转动:各质元均作圆周运动9优选课堂一个汽车轮子在地上的滚动A、B、C、…各点的运动都不相同绕过二.刚体平动的描述
刚体的平动可用质心运动来代表整体的运动1。质心的位矢设N个质点m1,m2,,mN,对应的位矢定义:质心的位矢质心重心10优选课堂二.刚体平动的描述刚体的平动可用质心运动来代表整体的运2。质心运动定理质心的速度:质心的加速度:设mi受力则:对所有质点求和:0——质心运动定理即:质心运动如同一质点,只是将质量全部集中于该点,所受的力是质点系受的所有外力。注:质心上可能既无质量,又未受力。211优选课堂2。质心运动定理质心的速度:质心的加速度:设mi受力则:对角位置θ角速度ω角加速度α·pro转动平面三.刚体(定轴)转动的角量描述12优选课堂角位置θ角速度ω角加速度α·pro转动平面三.刚体(6.2刚体的定轴转动定律一.刚体定轴转动所受力矩
力矩一般定义:此处即可是对某点也可是对某轴而言当刚体作定轴转动时,力矩就可以用标量来表示。oo习惯上把定轴用z表示力矩表示为13优选课堂6.2刚体的定轴转动定律一.刚体定轴转动所受力矩力矩oo.P1)在垂直oo
的平面内2)不在垂直oo
的平面内oo.P对刚体绕oo轴转动无贡献计算力矩时只需考虑的力矩
总可分解成两个分量:5合外力矩14优选课堂oo.P1)在垂直oo的平面内2)不在垂oo1。一个质点的情况
法向力对轴的矩为零切向力对轴的矩二.刚体定轴转动定律见右下平面图15优选课堂oo1。一个质点的情况法向力对轴的矩为零切向力对轴的(刚体类似于多质点系)设某刚体绕固定轴—Z轴转动Zmi取质量元mi,其到转轴的距离ri受力如图示,根据牛顿定律:各质元加速度不同,但角加速度相同用ri乘以上式:将所有质元相加:fifj0ro2。连续质量分布刚体的情况16优选课堂(刚体类似于多质点系)设某刚体绕固定轴—Z轴转动Zmi取质量定义——刚体对定轴(z轴)的转动惯量则有——定轴转动定律由与牛顿定律比较:或Jmm反映质点的平动惯性J反映刚体的转动惯性17优选课堂定义——刚体对定轴(z轴)的转动惯量则有——定轴转动定律3。理解注意是合外力矩
这条定律表明,刚体绕定轴转动时,它的角加速度与作用于刚体上的合外力矩成正比,与刚体对转轴的转动惯量成反比。
内力矩成对抵消,不能改变刚体的角动量,因而不能改变刚体的角速度。这是角动量定理在刚体定轴转动情形下的特例(1)(2)(3)18优选课堂3。理解注意是合外力矩这条定律表明,刚体绕定
质量连续分布质量离散分布对刚体定义—转动惯量单质点单位:kg∙m2─质量元─第i个质点的质量─到转轴的距离─到转轴的距离三.转动惯量及计算19优选课堂质量连续分布质量离散分布对刚体定义—转动惯量单质点单质量为线分布质量为面分布质量为体分布、、分别为质量的线密度、面密度和体密度。线分布体分布面分布
只有对于几何形状规则、质量连续且均匀分布的刚体才能用积分计算出刚体的转动惯量。20优选课堂质量为线分布质量为面分布质量为体分布、、分别为质量的
如图套两个质点的细杆长l,杆绕空端转动,分析整个系统绕o
点的转动惯量。将两质点换位再作计算。解:普通物理学教案例题1:
o2m
m
由om2m结论:21优选课堂如图套两个质点的细杆长l,杆绕空端转动,J与刚体的质量分布有关J与转轴的位置有关
因为质量分布是对转轴而言的,上例也可看作质心离转轴越远转动惯量越大。形状和转轴确定后,J与刚体的质量有关AlFe讨论影响转动惯量的因素22优选课堂J与刚体的质量分布有关因为质量分布是对转轴
求长为L、质量为
m的均匀细棒对端点轴和中垂轴的转动惯量。解:普通物理学教案例题2:ABL/2L/2Cx取如图坐标取质量元ABLx23优选课堂求长为L、质量为m的均匀细棒对端点轴和中
求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂直并通过圆心。解:普通物理学教案例题3:取质量元Odm24优选课堂求质量为m、半径为R的均匀圆环的转动惯量
求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。解:普通物理学教案例题4:这样的一个圆盘可以视为半径不等的有宽度的圆环拼接而成。任取其中一环利用前例环的转动惯量结果Rrdr25优选课堂求质量为m、半径为R均匀圆盘的转动惯量。
内半径为R1
外半径为R2
质量为m的匀质中空圆柱绕其对称轴的转动惯量。解:普通物理学教案例题5:26优选课堂内半径为R1外半径为R2质量为
质量为m半径为R的匀质薄球壳绕过中心轴的转动惯量。解:普通物理学教案例题6:在球面取一圆环带,半径27优选课堂质量为m半径为R的匀质薄球壳绕过中心轴的
质量为m半径为R的匀质球体绕过球心轴的转动惯量。解:普通物理学教案例题7:把球体看作无数个同心薄球壳的组合
28优选课堂质量为m半径为R的匀质球体绕过球心轴的转
如图所示,滑轮半径为r。(设绳与滑轮间无相对滑动)①若m2与桌面间的摩擦系数为μ,求系统的加速度a及张力T1
与T2;②若桌面光滑,再求。解:普通物理学教案例题8:力和力矩分析、方法1
按隔离法建坐标对质点用牛顿定律对刚体用转动定律限制性条件29优选课堂如图所示,滑轮半径为r。(设绳与滑轮间解得:若桌面光滑,摩擦力矩为零30优选课堂解得:若桌面光滑,摩擦力矩为零30优选课堂解法2由系统角动量定理取m1、m2、J为系统外力矩系统的角动量(任一时刻)(对滑轮转轴)31优选课堂解法2由系统角动量定理取m1、m2、J为系统外力由角动量定理由解得:再由牛顿定律可得张力。这也是定轴转动定律(整体分析方法)32优选课堂由角动量定理由解得:再由牛顿定律可得张力。这也是定轴转动定律一根均质细杆(m、L),一端可在竖直平面内自由转动。杆最初静止在水平位置,由此下摆
角求角加速度和角速度。解:普通物理学教案例题9:odm∙gdm下摆过程重力矩做功以杆为对象取质元当杆处在下摆
角时,该质量元所受重力对o点的矩为重力对整个棒的合力矩为:33优选课堂一根均质细杆(m、L),一端可在竖直平面内自由转动。杆代入转动定律,可得:代入转动动能定理34优选课堂代入转动定律,可得:代入转动动能定理34优选课堂
匀质圆盘的质量为m,半径为R,在水平桌面上绕其中心旋转。设圆盘与桌面之间的摩擦系数为μ,求圆盘从以角速度ω0旋转到静止需要多少时间?解:普通物理学教案例题10:摩擦力矩导致减速盘上任取微圆环圆环上各质点所受摩擦力矩全同,取ω0的方向为正,圆环所受力矩为35优选课堂匀质圆盘的质量为m,半径为R,在水平桌面整个圆盘所受的力矩为根据转动定律,得角加速度为常量,所以当圆盘停止转动时ω=0,得36优选课堂整个圆盘所受的力矩为根据转动定律,得角加速度为常量,所以第六章刚体定轴转动37优选课堂第六章刚体定轴转动1优选课堂复习质点的角动量力矩角动量定理角动量守恒定律若38优选课堂复习质点的角动量力矩角动量定理角动量守恒定律若2优选课本章主要内容1刚体的运动2刚体的角动量3刚体受到的力矩4刚体定轴转动定律5刚体的动能定理6刚体的角动量守恒定律39优选课堂本章主要内容1刚体的运动3优选课堂6.1刚体的运动与描述
质点的运动只代表物体的平动,物体实际上是有形状、大小的,它可以平动、转动,甚至更复杂的运动。因此,对于机械运动的研究,只限于质点的情况是不够的。
刚体是一种特殊的质点系,无论在多大外力作用下,系统内任意两质点间的距离始终保持不变。即物体的形状、大小都不变的固体称为刚体(rigidbody
)。
刚体考虑了物体的形状和大小,但不考虑它的形变,刚体同质点一样,也是一个理想化模型。40优选课堂6.1刚体的运动与描述质点的运动只代表一、刚体的运动
固联在刚体上的任一条直线,在各个时刻的位置始终保持彼此平行的运动,叫做刚体的平动。1.平动
刚才的动画演示了一个圆柱体的平动。在运动过程中,我们看到,刚体中所有质点的位移都是相同的。
而且在任何时刻,各个质点的速度和加速度也都相同。这时我们可以选取刚体上任一点的运动来代表刚体的运动。41优选课堂一、刚体的运动固联在刚体上的任一条直线,在各2.转动
如果刚体上所有各点绕同一直线(转轴)作圆周运动,则称为刚体的转动。
转动时,轴外各点在同一时间间隔内走过的弧长虽然不一样,但角位移全同。42优选课堂2.转动如果刚体上所有各点绕同一直线(转轴)固定转轴:转轴不随时间变化——刚体定轴转动瞬时转轴:转轴随时间变化——一般转动43优选课堂固定转轴:转轴不随时间变化——刚体定轴转动7优选课堂3.刚体的一般运动
例如,一个车轮的滚动,可以分解为车轮随着转轴的平动和整个车轮绕转轴的转动。
在研究刚体一般运动时,我们一般将它分解为质心的平动(应用质心运动定理)和刚体绕过质心轴的转动(应用转动定律)。44优选课堂3.刚体的一般运动例如,一个车轮的滚动,可一个汽车轮子在地上的滚动A、B、C、…各点的运动都不相同绕过o轴的转动oABCoo轮子的平动ABCoABCoABABCCo刚体的运动=平动+转动平动:刚体上所有点运动状态都相同转动:各质元均作圆周运动45优选课堂一个汽车轮子在地上的滚动A、B、C、…各点的运动都不相同绕过二.刚体平动的描述
刚体的平动可用质心运动来代表整体的运动1。质心的位矢设N个质点m1,m2,,mN,对应的位矢定义:质心的位矢质心重心46优选课堂二.刚体平动的描述刚体的平动可用质心运动来代表整体的运2。质心运动定理质心的速度:质心的加速度:设mi受力则:对所有质点求和:0——质心运动定理即:质心运动如同一质点,只是将质量全部集中于该点,所受的力是质点系受的所有外力。注:质心上可能既无质量,又未受力。247优选课堂2。质心运动定理质心的速度:质心的加速度:设mi受力则:对角位置θ角速度ω角加速度α·pro转动平面三.刚体(定轴)转动的角量描述48优选课堂角位置θ角速度ω角加速度α·pro转动平面三.刚体(6.2刚体的定轴转动定律一.刚体定轴转动所受力矩
力矩一般定义:此处即可是对某点也可是对某轴而言当刚体作定轴转动时,力矩就可以用标量来表示。oo习惯上把定轴用z表示力矩表示为49优选课堂6.2刚体的定轴转动定律一.刚体定轴转动所受力矩力矩oo.P1)在垂直oo
的平面内2)不在垂直oo
的平面内oo.P对刚体绕oo轴转动无贡献计算力矩时只需考虑的力矩
总可分解成两个分量:5合外力矩50优选课堂oo.P1)在垂直oo的平面内2)不在垂oo1。一个质点的情况
法向力对轴的矩为零切向力对轴的矩二.刚体定轴转动定律见右下平面图51优选课堂oo1。一个质点的情况法向力对轴的矩为零切向力对轴的(刚体类似于多质点系)设某刚体绕固定轴—Z轴转动Zmi取质量元mi,其到转轴的距离ri受力如图示,根据牛顿定律:各质元加速度不同,但角加速度相同用ri乘以上式:将所有质元相加:fifj0ro2。连续质量分布刚体的情况52优选课堂(刚体类似于多质点系)设某刚体绕固定轴—Z轴转动Zmi取质量定义——刚体对定轴(z轴)的转动惯量则有——定轴转动定律由与牛顿定律比较:或Jmm反映质点的平动惯性J反映刚体的转动惯性53优选课堂定义——刚体对定轴(z轴)的转动惯量则有——定轴转动定律3。理解注意是合外力矩
这条定律表明,刚体绕定轴转动时,它的角加速度与作用于刚体上的合外力矩成正比,与刚体对转轴的转动惯量成反比。
内力矩成对抵消,不能改变刚体的角动量,因而不能改变刚体的角速度。这是角动量定理在刚体定轴转动情形下的特例(1)(2)(3)54优选课堂3。理解注意是合外力矩这条定律表明,刚体绕定
质量连续分布质量离散分布对刚体定义—转动惯量单质点单位:kg∙m2─质量元─第i个质点的质量─到转轴的距离─到转轴的距离三.转动惯量及计算55优选课堂质量连续分布质量离散分布对刚体定义—转动惯量单质点单质量为线分布质量为面分布质量为体分布、、分别为质量的线密度、面密度和体密度。线分布体分布面分布
只有对于几何形状规则、质量连续且均匀分布的刚体才能用积分计算出刚体的转动惯量。56优选课堂质量为线分布质量为面分布质量为体分布、、分别为质量的
如图套两个质点的细杆长l,杆绕空端转动,分析整个系统绕o
点的转动惯量。将两质点换位再作计算。解:普通物理学教案例题1:
o2m
m
由om2m结论:57优选课堂如图套两个质点的细杆长l,杆绕空端转动,J与刚体的质量分布有关J与转轴的位置有关
因为质量分布是对转轴而言的,上例也可看作质心离转轴越远转动惯量越大。形状和转轴确定后,J与刚体的质量有关AlFe讨论影响转动惯量的因素58优选课堂J与刚体的质量分布有关因为质量分布是对转轴
求长为L、质量为
m的均匀细棒对端点轴和中垂轴的转动惯量。解:普通物理学教案例题2:ABL/2L/2Cx取如图坐标取质量元ABLx59优选课堂求长为L、质量为m的均匀细棒对端点轴和中
求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂直并通过圆心。解:普通物理学教案例题3:取质量元Odm60优选课堂求质量为m、半径为R的均匀圆环的转动惯量
求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。解:普通物理学教案例题4:这样的一个圆盘可以视为半径不等的有宽度的圆环拼接而成。任取其中一环利用前例环的转动惯量结果Rrdr61优选课堂求质量为m、半径为R均匀圆盘的转动惯量。
内半径为R1
外半径为R2
质量为m的匀质中空圆柱绕其对称轴的转动惯量。解:普通物理学教案例题5:62优选课堂内半径为R1外半径为R2质量为
质量为m半径为R的匀质薄球壳绕过中心轴的转动惯量。解:普通物理学教案例题6:在球面取一圆环带,半径63优选课堂质量为m半径为R的匀质薄球壳绕过中心轴的
质量为m半径为R的匀质球体绕过球心轴的转动惯量。解:普通物理学教案例题7:把球体看作无数个同心薄球壳的组合
64优选课堂质量为m半径为R的匀质球体绕过球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校特色部管理制度
- 学校饮水机管理制度
- 学生科内勤管理制度
- 安全不放心管理制度
- 安全绩效奖管理制度
- 安检运营与管理制度
- 安装科安全管理制度
- 定制品定价管理制度
- 实行周计划管理制度
- 宠物驴日常管理制度
- 2025年高考语文全国一卷试题真题及答案详解(精校打印)
- 2024年成都市八年级(初二会考)中考地理+生物真题试卷
- 2024北京海淀区四年级(下)期末数学试题及答案
- 体检中心质量控制指南
- 星期音乐会智慧树知到期末考试答案章节答案2024年同济大学
- 放行考试复习题目-放行人员理论试题规章部分
- 柴油供货运输服务方案(完整版)
- 2022教科版五年级科学下册第四单元热全套教学设计[表格式]
- 年普通高校(中专招生考生体格检查表
- 天津市河西区20142015学年度小升初数学试卷汇编
- 铁路货物运价规则 铁运[2005]46号
评论
0/150
提交评论