




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若,则()A. B.C. D.22.已知直线与直线平行,则的值为A. B.C.1 D.3.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减4.已知函数的图象与直线有三个不同的交点,则的取值范围是()A. B.C. D.5.将函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象.A.π6 B.C.2π3 D.6.已知是第二象限角,,则()A. B.C. D.7.函数的零点所在的大致区间是()A. B.C. D.8.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.9.以,为基底表示为A. B.C. D.10.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.312.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是A.①②③ B.②④C.③④ D.②③④二、填空题(本大题共4小题,共20分)13.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________14.若,则______15.写出一个周期为且值域为的函数解析式:_________16.cos(-225°)=______三、解答题(本大题共6小题,共70分)17.已知函数,.(1)解不等式:;(2)若函数在区间上存在零点,求实数的取值范围;(3)若函数的反函数为,且,其中为奇函数,为偶函数,试比较与的大小.18.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.19.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.已知函数(1)求的单调递增区间;(2)画出在上的图象21.求下列各式的值:(1);(2).22.等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】应用倍角正余弦公式及商数关系将目标式化为,结合已知即可求值.【详解】由题意知,,故选:B.2、D【解析】由题意可得:,解得故选3、A【解析】由可知是奇函数,排除,,且,由可知错误,故选4、D【解析】作出函数的图象,结合图象即可求出的取值范围.【详解】作函数和的图象,如图所示,可知的取值范围是,故选D.5、C【解析】根据正弦型函数图象变换的性质,结合零点的定义和正弦型函数的性质进行求解即可.【详解】因为函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象,所以函数因为x=0是函数Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)当φ=2kπ(k∈Z)时,因为φ>0,所以φ的最小值是2π,当φ=2kπ+2π3(k∈Z)时,因为φ>0,所以φ综上所述φ的最小值是2π3故选:C6、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.7、C【解析】由题意,函数在上连续且单调递增,计算,,根据零点存在性定理判断即可【详解】解:函数在上连续且单调递增,且,,所以所以的零点所在的大致区间是故选:8、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.9、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.10、A【解析】由于,所以由终边相同的定义可得结论【详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A11、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.12、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:由正方体的几何特征可得:①不平行,不正确;
②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;④易证,故,正确;故选D二、填空题(本大题共4小题,共20分)13、【解析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【点睛】本题考查函数单调性、函数最值的计算,关键是求出c的值.14、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:15、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:16、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”三、解答题(本大题共6小题,共70分)17、(1)或;(2);(3)【解析】(1)根据二次不等式和对数不等式的解法求解即可得到所求;(2)由可得,故所求范围即为函数在区间上的值域,根据换元法求出函数的值域即可;(3)根据题意可求出,进而得到和,于是可得大小关系【详解】(1)由,得或,即或,解得,所以原不等式的解集为(2)令,得令,由,得,则,其中令,则在上单调递增,所以,即,所以.故实数的取值范围为(3)由题意得,即,因此,因为为奇函数,为偶函数,所以,解得,所以,,因此另法:,所以【点睛】(1)本题考查函数知识的综合运用,解题时要注意函数、方程、不等式间的关系的应用,根据条件及要求合理求解(2)解决函数零点问题时,可转化为方程解得问题处理,也可利用分离变量的方法求解,转化为求具体函数值域的问题,解题时注意转化的合理性和等价性18、(1)(2)见解析【解析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数解析式确定函数的最大值即可.【详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.19、(1);(2)32万部,最大值为6104万美元.【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,,当时,.所以(2)①当时,,所以;②当时,,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合①②知,当,取得最大值为6104万美元.【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解20、(1),(2)见解析【解析】(1)计算,得到答案.(2)计算函数值得到列表,再画出函数图像得到答案.【详解】(1)令,,得,即,.故的单调递增区间为,.(2)因为所以列表如下:0024002【点睛】本题考查了三角函数的单调性和图像,意在考查学生对于三角函数性质的灵活运用.21、(1)(2)2【解析】(1)结合指数的运算化简计算即可求出结果;(2)结合对数的运算化简计算即可求出结果;【小问1详解】【小问2详解】22、(Ⅰ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考试心理与乐理学习的试题及答案
- 施工现场安全检查考题解析试题及答案
- 注册土木工程师考试的备考策略与行动计划制定研究试题及答案
- 工厂模式测试题及答案
- 法治宣传考试试题及答案
- 电梯独家使用合同协议书
- 船舶修理合同
- 电商环境下消费模式变化对农业的影响研究试题及答案
- 网络营销对农产品电商的影响分析试题及答案
- 新能源汽车技术研发的国际合作考核试题及答案
- GB/T 37356-2019色漆和清漆涂层目视评定的光照条件和方法
- GB/T 262-2010石油产品和烃类溶剂苯胺点和混合苯胺点测定法
- GB/T 22720.1-2017旋转电机电压型变频器供电的旋转电机无局部放电(Ⅰ型)电气绝缘结构的鉴别和质量控制试验
- 机柜间主体施工方案
- 福格行为模型
- 银级考试题目p43测试题
- 有限空间作业及应急物资清单
- 思想道德与法治教案第一章:领悟人生真谛把握人生方向
- 0-6岁儿童随访表
- 江西新定额2017土建定额说明及解释
- 国家电网有限公司十八项电网重大反事故措施(修订版)-2018版(word文档良心出品)
评论
0/150
提交评论