




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列各式正确是A. B.C. D.2.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.3.已知函数,则函数()A. B.C. D.4.终边在y轴上的角的集合不能表示成A. B.C. D.5.四棱柱中,,,则与所成角为A. B.C. D.6.已知点是第三象限的点,则的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.设集合,,则集合与集合的关系是()A. B.C. D.8.设,,,则a、b、c的大小关系是A. B.C. D.9.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年10.已知某种树木的高度(单位:米)与生长年限t(单位:年,)满足如下的逻辑斯谛(Logistic)增长模型:,其中为自然对数的底数,设该树栽下的时刻为0,则该种树木生长至3米高时,大约经过的时间为()A.2年 B.3年C.4年 D.5年11.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C D.二、填空题(本大题共4小题,共20分)13.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______14.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.15.若,则________.16.函数的单调递减区间为_______________.三、解答题(本大题共6小题,共70分)17.已知直线与圆相交于点和点(1)求圆心所在的直线方程;(2)若圆心的半径为1,求圆的方程18.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.19.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积20.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.21.化简求值:(1)已知都为锐角,,求的值;(2).22.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选2、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积3、C【解析】根据分段函数的定义域先求出,再根据,根据定义域,结合,即可求出结果.【详解】由题意可知,,所以.故选:C.4、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.5、D【解析】四棱柱中,因为,所以,所以是所成角,设,则,+=,所以,所以+=,所以,所以选择D6、D【解析】根据三角函数在各象限的符号即可求出【详解】因为点是第三象限的点,所以,故的终边位于第四象限故选:D7、D【解析】化简集合、,进而可判断这两个集合的包含关系.【详解】因为,,因此,.故选:D.8、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等9、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.10、C【解析】根据题意,列方程,即可求解.【详解】由题意可得,令,即,解得:t=4.故选:C11、B【解析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B12、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题二、填空题(本大题共4小题,共20分)13、①.1②.【解析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,14、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:15、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:16、【解析】由题得,利用正切函数的单调区间列出不等式,解之即得.【详解】由题意可知,则要求函数的单调递减区间只需求的单调递增区间,由得,所以函数的单调递减区间为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)x-y=0(2)【解析】本试题主要是考查了直线与圆的位置关系的运用,.以及圆的方程的求解(1)PQ中点M(,),,所以线段PQ的垂直平分线即为圆心C所在的直线的方程:(2)由条件设圆的方程为:,由圆过P,Q点得得到关系式求解得到.则或故圆的方程为18、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可.(2)由充分条件知,则有,进而求的取值范围.【小问1详解】,当时,,或,∴或;【小问2详解】由是的充分条件,知:,∴,解得,∴的取值范围为.19、(1)(2)【解析】(1)直接按照锥体表面积计算即可;(2)利用正方体体积减去三棱锥,,,的体积即可.【小问1详解】∵是正方体,∴,∴三棱锥的表面积为【小问2详解】三棱锥,,,是完全一样的且正方体的体积为,故20、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点时,,,所以当时,与的图象在第一象限内有一个交点.所以与的图象有两个交点.所以的取值范围是.21、(1),(2)0.【解析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式22、(1)(2)或【解析】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国铸铁围栏行业投资前景及策略咨询研究报告
- 2024至2030年中国熔纺氨纶切片行业投资前景及策略咨询研究报告
- 2024年中国速写铅笔市场调查研究报告
- 2024年中国滑动门专用胶带市场调查研究报告
- 视频拍摄制作合同协议
- 茶长期供销合同协议
- 英文国内贸易合同协议
- 装修合同尾款交付协议
- 茶叶厂合同协议
- 装修贷合同协议
- 2024年辽宁省中考生物真题卷及答案解析
- 体育中考改革背景下退役运动员转型学校教练员助力学校体育发展
- Unit 5 课时4 Writing 同步练习
- 2024年湖南高考真题化学试题(解析版)
- 江苏科技大学《工程流体力学》2021-2022学年第一学期期末试卷
- 危险化学品事故应急处理规章制度
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 施工组织设计安全措施方案
- 中国邮政集团有限公司招聘笔试题库2024
- 山东省职业院校技能大赛智能制造设备技术应用赛项学生赛题B
- 2024-2030年蛋鸡养殖产业市场深度调研及发展现状趋势与投资前景预测研究报告
评论
0/150
提交评论