版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若在是减函数,则的最大值是A. B.C. D.2.设全集,,,则图中阴影部分表示的集合为A. B.C. D.3.设函数,,则函数的零点个数是A.4 B.3C.2 D.14.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.5.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.6.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面7.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和8.已知函数,若正实数、、、互不相等,且,则的取值范围为()A. B.C. D.9.已知,,则A. B.C. D.10.化简A. B.C.1 D.11.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.若不计空气阻力,则竖直上抛的物体距离抛出点的高度h(单位:)与时间t(单位:)满足关系式(取,为上抛物体的初始速度).一同学在体育课上练习排球垫球,某次垫球,排球离开手臂竖直上抛的瞬时速度,则在不计空气阻力的情况下,排球在垫出点2m以上的位置大约停留()A.1 B.1.5C.1.8 D.2.2二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__14.已知函数,则使不等式成立的的取值范围是_______________15.已知幂函数的图象过点,且,则a的取值范围是______16.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;18.已知幂函数的图象过点.(1)求出函数的解析式,判断并证明在上的单调性;(2)函数是上的偶函数,当时,,求满足时实数的取值范围.19.已知曲线:.(1)当为何值时,曲线表示圆;(2)若曲线与直线交于、两点,且(为坐标原点),求的值.20.已知为锐角,,(1)求和的值;(2)求和的值21.已知函数(0<ω<6)的图象的一个对称中心为(1)求f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)求f(x)在区间上的最大值和最小值22.如图,在中,为边上的一点,,且与的夹角为.(1)设,求,的值;(2)求的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】因为,所以由得因此,从而的最大值为,故选:A.2、B【解析】,阴影部分表示的集合为,选B.3、B【解析】函数的零点个数就是函数的图象和函数的图象的交点个数,分别画出函数的图象和函数的图象,如图,由图知,它们的交点个数是,函数的零点个数是,故选B.【方法点睛】已知函数零点(方程根)的个数求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.4、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.5、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B6、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.7、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D8、A【解析】利用分段函数的定义作出函数的图象,不妨设,根据图象可得出,,,的范围同时,还满足,即可得答案【详解】解析:如图所示:正实数、、、互不相等,不妨设∵则,∴,∴且,,∴故选:A9、A【解析】∵∴∴∴故选A10、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题11、C【解析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.12、D【解析】将,代入,得出时间t,再求间隔时间即可.【详解】解:将,代入,得,解得,所以排球在垫出点2m以上的位置大约停留.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、﹣≤a≤2【解析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.14、【解析】由奇偶性定义可判断出为偶函数,结合复合函数单调性的判断可得到在上单调递增,由偶函数性质知其在上单调递减,利用函数单调性解不等式即可求得结果.【详解】由,解得:或,故函数的定义域为,又,为上的偶函数;当时,单调递增,设,,在上单调递增,在上单调递增,在上单调递增,又为偶函数,在上单调递减;由可知,解得.故答案为:.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.15、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:16、②③【解析】利用正弦函数的图像与性质,逐一判断即可.【详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【点睛】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)奇函数(2)单调增函数,证明见解析(3)【解析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定义在R上的奇函数且在(-∞,+∞)上单调递增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是18、(1),在上是增函数;证明见解析(2)【解析】(1)幂函数的解析式为,将点代入即可求出解析式,再利用函数的单调性定义证明单调性即可.(2)由(1)可得当时,在上是增函数,利用函数为偶函数可得在上是减函数,由,,从而可得,解不等式即可.【详解】(1)设幂函数的解析式为,将点代入解析式中得,解得,所以,所求幂函数的解析式为.幂函数在上是增函数.证明:任取,且,则,因为,,所以,即幂函数在上是增函数(2)当时,,而幂函数在上是增函数,所以当时,在上是增函数.又因为函数是上的偶函数,所以在上是减函数.由,可得:,即,所以满足时实数的取值范围为.【点睛】本题考查了幂函数、函数单调性的定义,利用函数的奇偶性、单调性解不等式,属于基础题.19、(1);(2).【解析】(1)由圆的一般方程所满足的条件列出不等式,解之即可;(2)将转化为,即,然后直线与圆联立,结合韦达定理列出关于的方程,解方程即可.【详解】(1)由,得.(2)设,,由得,即.将直线方程与曲线:联立并消去得,由韦达定理得①,②,又由得;∴.将①、②代入得,满足判别式大于0.20、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以21、(1);(2)[],k∈Z;(3)最大值为10,最小值为【解析】(1)先降幂化简原式,再利用对称中心求得ω,进而得周期;(2)利用正弦函数的单调区间列出不等式即可得解;(3)利用(2)的结论,确定所给区间的单调性,再得最值【详解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是对称中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期为π;(2)由,得,∴f(x)的单调递增区间为:[],k∈Z,(3)由(2)可知,f(x)在[]递减,在[]递增,可知当x=时得最大值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业生产管理与效率提升(标准版)
- 公共交通运营统计分析制度
- 公共交通车辆购置管理制度
- 南充市营山县2025年下半年公开考核招聘事业单位工作人员备考题库及一套完整答案详解
- 2026年重庆大学电气工程学院量子智能传感器团队劳务派遣工程技术人员招聘备考题库完整答案详解
- 养老院投诉处理与改进制度
- 2026年遵义市市直事业单位公开选调备考题库及一套答案详解
- 2026年聊城幼儿师范学校第二批公开招聘工作人员9人备考题库及1套完整答案详解
- 2026年梧州市长洲区荣祥投资有限公司招聘备考题库及参考答案详解
- 2026年韶关市大宝山资源综合利用有限公司招聘备考题库参考答案详解
- 医疗器械使用与维护常见问题汇编
- 企业员工培训效果评估报告模板
- 中国资产托管行业发展报告2025
- 联合培养研究生协议
- 虚拟电厂课件
- 部队核生化防护基础课件
- 医疗器械胰岛素泵市场可行性分析报告
- 2025年《处方管理办法》培训考核试题(附答案)
- 租金催缴管理办法
- 地铁施工现场防台风措施
- 种植业合作社账务处理
评论
0/150
提交评论