




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知,则A. B.C. D.2.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.3.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.4.已知集合,集合,则A∩B=()A. B.C. D.5.在正方体中,异面直线与所成的角为()A.30° B.45°C.60° D.90°6.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.若点在角的终边上,则的值为A. B.C. D.8.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.29.如图所示,在中,.若,,则()A. B.C. D.10.已知,则()A. B.7C. D.111.若点在角的终边上,则()A. B.C. D.12.已知向量,,若,则()A. B.C.2 D.3二、填空题(本大题共4小题,共20分)13.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________14.函数是定义在上周期为2的奇函数,若,则______15.设函数,若关于x的方程有四个不同的解,,,,,且,则m的取值范围是_____,的取值范围是__________16.已知集合,.若,则___________.三、解答题(本大题共6小题,共70分)17.已知(1)化简;(2)若,求值18.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围19.已知,.(1)求的值;(2)求的值.20.已知命题,且,命题,且,(1)若,求实数a的取值范围;(2)若p是q的充分条件,求实数a的取值范围21.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;22.已知函数,(Ⅰ)求的最小正周期及单调递增区间;(Ⅱ)求在区间上的最大值和最小值
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质2、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.3、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A4、B【解析】化简集合B,再求集合A,B的交集即可.【详解】∵集合,集合,∴.故选:B.5、C【解析】首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.6、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C7、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.9、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C10、A【解析】利用表示,代入求值.【详解】,即,.故选:A11、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数定义可得.故选:A.12、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A二、填空题(本大题共4小题,共20分)13、【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:14、1【解析】根据给定条件利用周期性、奇偶性计算作答.【详解】因函数是上周期为2的奇函数,,所以.故答案为:1【点睛】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期.15、①.②.【解析】画出的图象,结合图象可得的取值范围及,,再利用函数的单调性可求目标代数式的范围.【详解】的图象如下图所示,当时,直线与的图象有四个不同的交点,即关于x的方程有四个不同的解,,,.结合图象,不难得即又,得即,且,所以,设,易知道在上单调递增,所以,即的取值范围是故答案为:,.思路点睛:知道函数零点的个数,讨论零点满足的性质时,一般可结合初等函数的图象和性质来处理,注意图象的正确的刻画.16、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故的值为.18、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可得,即,则,由的图象过,可得(1),即,解得,故;【小问2详解】,可得,,在上递增证明:设,则,由,可得,,,则,即,可得,递增;【小问3详解】当时,;当时,①时,时,;时,不满足条件,舍去;②当时,时,,,时,,,,由题意可得,,,可得,即;综上可得;③当时,时,,,时,,,,由题意可得,,,可得,可令,则在上递减,,故由,可得,即,综上可得,所以的取值范围是【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题19、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值20、(1);(2).【解析】(1)由可得,解不等式求出a的取值范围即可;(2)把p是q的充分条件转化为集合A和集合B之间的关系,运用集合的知识列出不等式组求解a的范围即可.【详解】(1),,解之得:,故a的取值范围为;(2)或,p是q的充分条件,,或,解之得:或,故实数a的取值范围为.【点睛】本题考查元素与集合间的关系,考查充分条件的应用,考查逻辑思维能力和运算能力,属于常考题.21、(1)(2)万箱【解析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大22、(Ⅰ)最小正周期是,单调递增区间是.(Ⅱ)最大值为,最小值为【解析】详解】试题分析:(Ⅰ)将函数解析式化为,可得最小正周期为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园艺工技师考试试题及答案
- 拼多多和java面试题及答案
- 铁路工程测量培训课件
- 2025年 德阳市人民医院招聘考试试卷附答案
- 感冒用药相关知识培训
- 员工异地培训差旅费会计处理指南
- 护理教师试讲15分钟范例
- 爱的教育导读课
- 2025时间管理培训:效率倍增的认识和行动实践指南
- 通风性关节炎的护理讲课
- 农村自建房流程
- 2025年江苏南京河西新城区国有资产经营控股集团招聘笔试参考题库附带答案详解
- 云南锡业职业技术学院《影视剧配音》2023-2024学年第一学期期末试卷
- 《路径规划算法》课件
- 弱电工程施工方案和施工措施
- 知识产权合规管理体系解读
- 血透护理记录书写规范
- 高血压性心脏病护理
- 托育职业竞赛试题及答案
- 《工业园区培训》课件
- 045.糖尿病患者血脂管理中国专家共识2024版
评论
0/150
提交评论